似乎突如其来,似乎合情合理,我们和巴菲特老先生一起亲见了一次,又一次,双一次,叒一次的美股熔断.身处历史的洪流,渺小的我们会不禁发问:那以后呢?还会有叕一次吗?于是就有了这篇记录:利用ARIMA模型来预测美股的走势. 1. Get Train Dataset and Test Dataset 本例子简单地以2020年第一季度的道指的收盘价为数据集(数据来源雅虎财经),将前面95%的数据用作本次预测的训练集,后面5%的数据用作本次预测的测试集. library(quantmod) stock <-
补充:https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-276 如果用arima的话,还不如使用随机森林... 原文地址:https://medium.com/open-machine-learning-course/open-machine-learning-course-topic-9-time-series-analysis-in-python-a270cb05e0b3 数据集样子: y ti
import pandas as pd import matplotlib.pyplot as plt import statsmodels as sm from statsmodels.graphics.tsaplots import plot_acf,plot_pacf import numpy as np discfile = r'D:\期末论文安排\日线数据\renminbi_ouyuan.xlsx' forecastnum = 5 data = pd.read_excel(discfi
Time Series Anomaly Detection in Network Traffic: A Use Case for Deep Neural Networks from:https://jask.com/time-series-anomaly-detection-in-network-traffic-a-use-case-for-deep-neural-networks/ Introduction As the waves of the big data revolution cas