from:http://kubicode.me/2016/09/19/Machine%20Learning/AUC-Calculation-by-Python/ AUC介绍 AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,其计算原理可以参考这个ROC和AUC介绍以及如何计算AUC,但是有时候模型是单独的或者自己编写的,此时想要评
分类器各种各样,如何评价这些分类器的性能呢?(这里只考虑二元分类器,分类器的输出为概率值) 方法一:概率定义法 从正样本中随机选取元素记为x,从负样本中随机选取元素记为y,x的置信度大于y的概率 计算方法可以描述为 s=0 for x in 正例: s+=1/正例总数×置信度小于x的负例所占比例 return s 概率是用来定义问题的利器,如基尼系数. 方法二:正样本排名法 对全部样本按照置信度从高到低进行排序,排名依次记做1,2,3......全部正例的排名之和记为R,R越小表明分类器越准.