最近在跑一些网络时发现,训练完的网络在测试集上的效果总是会受Batch_Size 大小的影响.这种现象跟以往自己所想象的有些出入,于是出于好奇,各种搜博客,大致得出了自己想要的答案,现写一篇博客记录一下. 在训练过程中,一般有三种方式来从数据集中抽取数据,更新参数.一种是取所有的样本算出梯度(Full Batch Learning),另一种是每次迭代只取一个样本进行更新,也即在线学习(Online Learning),取Batch_Size = 1,还有一种是批梯度下降法(Mini-batche