http://www.cnblogs.com/endv/p/6052511.html // ------------------------------------------------------------------ // CaptureTest.cs // Sample application to show the DirectX.Capture class library. // // History: // 2003-Jan-25 BL - created // // Copyr
Problem D: LC-Display Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 14 Solved: 3[Submit][Status][Web Board] Description A friend of yours has just bought a new computer. Before this, the most powerful machine he ever used was a pocket calculator. He
Google Inception Net,ILSVRC 2014比赛第一名.控制计算量.参数量,分类性能非常好.V1,top-5错误率6.67%,22层,15亿次浮点运算,500万参数(AlexNet 6000万).V1降低参数量目的,参数越多模型越庞大,需数据量越大,高质量数据昂贵:参数越多,耗费计算资源越大.模型层数更深,表达能力更强,去除最后全连接层,用全局平均池化层(图片尺寸变1x1),参数大减,模型训练更快,减轻过拟合(<Network in Network>论文),Inceptio
本文为您解读SPP-net: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Motivation 神经网络在计算机视觉方面的成功得益于卷积神经网络,然而,现有的许多成功的神经网络结构都要求输入为一个固定的尺寸(比如224x224,299x299),传入一张图像,需要对它做拉伸或者裁剪,再输入到网络中进行运算. 然而,裁剪可能会丢失信息,拉伸会使得图像变形,这些因素都提高了视觉任务的门槛,