Beam Search的问题 先解释一下什么要对Beam Search进行改进.因为Beam Search虽然比贪心强了不少,但还是会生成出空洞.重复.前后矛盾的文本.如果你有文本生成经验,一定对这些现象并不陌生.在语言模型还不像如今的BERT.GPT这么厉害的时候,这种现象更加明显. 没有经验也没关系,我们来看一个论文里面的例子.输入模型的引文(context) "The study, published in the Proceedings of the They were cattle c
PageRanking 通过: Input degree of link "Flow" model - 流量判断喜好度 传统的方式又是什么呢? Every term在某个doc中的权重(地位). 公共的terms在Query与Doc中对应的的地位(单位化后)直接相乘,然后全部加起来,构成了cosin相似度. Efficient cosine ranking 传统放入堆的模式:n * log(k) 使用Quick Select:n + k * log(k) : "find to
Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2,2,3] and k = 2, return [1,2]. Note: You may assume k is always valid, 1 ≤ k ≤ number of unique elements. Your algorithm's time complexity must be
Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2,2,3] and k = 2, return [1,2]. Note: You may assume k is always valid, 1 ≤ k ≤ number of unique elements. Your algorithm's time complexity must be bet
Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2,2,3] and k = 2, return [1,2]. Note: 347. Top K Frequent ElementsYou may assume k is always valid, 1 ≤ k ≤ number of unique elements. Your algorithm's
key points: 1. group by key and sort by using distribute by and sort by. 2. get top k elements by a UDF (user defined function) RANK ---------Here is the source code.-------------- package com.example.hive.udf;import org.apache.hadoop.hive.ql.exec.UD
Top K问题在数据分析中非常普遍的一个问题(在面试中也经常被问到),比如: 从20亿个数字的文本中,找出最大的前100个. 解决Top K问题有两种思路, 最直观:小顶堆(大顶堆 -> 最小100个数): 较高效:Quick Select算法. LeetCode上有一个215. Kth Largest Element in an Array,类似于Top K问题. 1. 堆 小顶堆(min-heap)有个重要的性质--每个结点的值均不大于其左右孩子结点的值,则堆顶元素即为整个堆的最小值.JDk
Given a non-empty list of words, return the k most frequent elements. Your answer should be sorted by frequency from highest to lowest. If two words have the same frequency, then the word with the lower alphabetical order comes first. Example 1: Inpu
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - Leetcode 347. Top K Frequent Elements - 题解 在线提交: https://leetcode.com/problems/top-k-frequent-elements/ Description Given a non-empty array of integers
一.topK python实现 def topk(k, lst): top = [0 for i in range(k)] #生成一个长度为K 的有序列表 for item in lst: #循环将要取 排行榜的列表 for i in range(k-1,-1, -1): if item > top[i]: #在top 表中找到他的位置并插入 top.insert(i+1,item) top.pop(0) #删除值最小 索引为0的元素 break #找到了就打断 print(top) ret