详细代码已上传到github: click me Abstract: Sentiment classification is the process of analyzing and reasoning the sentimental subjective text, that is, analyzing the attitude of the speaker and inferring the sentiment category it contains. Traditional mac
为什么要用深度学习模型?除了它更高精度等原因之外,还有一个重要原因,那就是它是目前唯一的能够实现“端到端”的模型.所谓“端到端”,就是能够直接将原始数据和标签输入,然后让模型自己完成一切过程——包括特征的提取.模型的学习.而回顾我们做中文情感分类的过程,一般都是“分词——词向量——句向量(LSTM)——分类”这么几个步骤.虽然很多时候这种模型已经达到了state of art的效果,但是有些疑问还是需要进一步测试解决的.对于中文来说,字才是最低粒度的文字单位,因此从“端到端”的角度来看,应该将直
参照当Bert遇上Kerashttps://spaces.ac.cn/archives/6736此示例准确率达到95.5%+ https://github.com/CyberZHG/keras-bert/blob/master/README.zh-CN.md 示例实现 # ! -*- coding:utf-8 -*- import json import numpy as np import pandas as pd from random import choice from keras_be
转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.html IBM 公司在 2015 年对外宣告了一个新的科技和商务时代的来临—认知时代.这个巨大的转变,来自 IBM 对技术和商业领域的三个重要的洞察力[1].第一,这个世界被数据所充斥.第二,这个世界通过代码被改造.第三,认知计算的出现.其中,认知计算可以: 通过感知与互动,理解非结构化数据 通过生成
特征选择 RFormula RFormula是一个很方便,也很强大的Feature选择(自由组合的)工具. 输入string 进行独热编码(见下面例子country) 输入数值型转换为double(见下面例子hour) label为string,也用StringIndexer进行编号 RFormula produces a vector column of features and a double or string column of label. Like when formulas ar
使用IMDB情绪数据来比较CNN和RNN两种方法,预处理与上节相同 from __future__ import print_function import numpy as np import pandas as pd from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense,Dropout,Embedding,LSTM,Bidirect