首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
bitset)优化最长公共子序列算法
2024-11-04
【科技】位运算(bitset)优化最长公共子序列算法
最长公共子序列(LCS)问题 你有两个字符串 \(A,B\),字符集为 \(\Sigma\),求 \(A, B\) 的最长公共子序列. 简单动态规划 首先有一个广为人知的 dp:\(f_{i,j}\) 为 \(A\) 的长度为 \(j\) 的前缀与 \(B\) 长度为 \(i\) 的前缀的 LCS.(注意 \(i\) 和 \(j\) 分别对于那个串) 那么显然有: \[f_{i,j} = \begin{cases} f_{i-1, j-1} + 1 & (A_j = B_i) \\ \max(f
用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对于算法导论的版本,增加了一个多分支回溯,即存储回溯方向时出现了向上向左都可以的情况时,这时候就代表可能有多个最长公共子序列.当回溯到这里时,让程序带着存储已经回溯的字符串的栈进行递归求解,当走到左上角的时候输出出来 # coding=utf-8 class LCS(): def input(self
LCSS最长公共子序列算法
0.论文基本介绍以及相关内容 分析移动用户位置的相似性,提取移动用户的相似路径在出行路径预测.兴趣区域发现.轨迹聚类.个性化路径推荐等领域具有广泛的应用. 重点:利用移动用户定位数据找到合适轨迹的表示方法,如何高效计算移动用户轨迹间的相似性成为热点. 本文---基于改进LCSS的移动用户轨迹相似性查询算法研究: (1)移动用户原始轨迹数据->抽取位置序列->映射为具有时间和地理位置信息的序列. 解决移动用户轨迹数据的稀疏性导致相似度算法效率低下的问题. (2)FP-tree频繁模式树的加权频繁
程序员的算法课(6)-最长公共子序列(LCS)
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/details/99999354 上一节我们讲了动态规划,我们也知道,动态规划对于子问题重叠的情况特别有效,因为它将子问题的解保存在存储空间中,当需要某个子问题的解时,直接取值即可,从而避免重复计算! 这一节我们来解决一个问题,就是最长公共子序列. 一.啥叫最长公共子序列? [百度百科]LCS是Long
HDU 1159 Common Subsequence 【最长公共子序列】模板题
题目链接:https://vjudge.net/contest/124428#problem/A 题目大意:给出两个字符串,求其最长公共子序列的长度. 最长公共子序列算法详解:https://blog.csdn.net/hrn1216/article/details/51534607 (其中的图解很详细) 根据图解理解下面代码 #include<cstdio> #include <string> #include<cstring> #include<i
ACM/ICPC 之 最长公共子序列计数及其回溯算法(51Nod-1006(最长公共子序列))
这道题被51Nod定为基础题(这要求有点高啊),我感觉应该可以算作一级或者二级题目,主要原因不是动态规划的状态转移方程的问题,而是需要理解最后的回溯算法. 题目大意:找到两个字符串中最长的子序列,子序列的要求满足其中字符的顺序和字母在两个序列中都必须相同,任意输出一个符合题意的子序列 首先是最基本的最长公共子序列的状态转移问题: 这里的maxLen[i][j]数组的意思就是保存s1的前 i 个字符和s2的前 j 个字符匹配的状态. 举个例子:maxLen[3][6]即表明在s1的前3个字符和s2
算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的最长公共子串方法.最长公共子串用动态规划可实现O(n^2)的时间复杂度,O(n^2)的空间复杂度:还可以进一步优化,用后缀数组的方法优化成线性时间O(nlogn):空间也可以用其他方法优化成线性.3.LIS(最长递增序列)DP方法可实现O(n^2)的时间复杂度,进一步优化最佳可达到O(nlogn)
从最长公共子序列问题理解动态规划算法(DP)
一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如何判断一个问题是不是DP问题呢?适合DP求解的最优化问题通常具有以下两个特征: 最优子结构 如果一个问题的最优解包含其子问题的最优解,我们就称此问题具有最优子结构性质. 以0-1背包问题(给你一个可装载重量为W的背包和N个物品,每个物品有重量和价值两个属性.其中第i个物品的重量为wt[i],价值为v
[科技]Loj#6564-最长公共子序列【bitset】
正题 题目链接:https://loj.ac/p/6564 题目大意 给两个序列\(a,b\)求它们的最长公共子序列. \(1\leq n,m,a_i,b_i\leq 7\times 10^4\) 解题思路 无意间看到的一个\(bitset\)科技. 首先设\(f_{i,j}\)表示\(a\)串匹配到第\(i\)个\(b\)串匹配到第\(j\)个时的最长长度,做过\(dp\)套\(dp\)的应该知道\(f_{i,j}\)的性质. \[0\leq f_{i,j}-f_{i,j-1}\leq 1 \
【算法】最长公共子序列(nlogn)
转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复杂度为O(n^2)的动态规划(DP)算法,但在James W. Hunt和Thomas G. Szymansky 的论文"A Fast Algorithm for Computing Longest Common Subsequence"中,给出了O(nlogn)下限的一种算法. 定理:设
《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)
From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的.而最长公共子序列则并不要求连续. 2.最长公共子串 其实这是一个序贯决策问题,可以用动态规划来求解.我们采用一个二维矩阵来记录中间的结果.这个二维矩阵怎么构造呢?直接举个例子吧:"bab"和"caba"(当然我们现在一眼就可以看出来最长公共子串是
算法实践--最长公共子序列(Longest Common Subsquence)
什么是最长公共子序列 X=ACCG Y=CCAGCA 长度为1的公共子序列: {A} {C} {G} 长度为2的公共子序列:{AC} {CC} {CG} {AG} 长度为3的公共子序列:{ACG} 长度为4的公共子序列 最长公共子序列即为 {ACG} 问题:长度为N和M的两个序列如何求他们的最长公共子序列? X = ACCGGGTTACCGTTTAAAACCCGGGTAACCT Y = CCAGGACCAGGGACCGTTTACCAGCCTTAAACCA 简单算法 for (int i=N; i
算法练习——最长公共子序列的问题(LCS)
问题描述: 对于两个序列X和Y的公共子序列中,长度最长的那个,定义为X和Y的最长公共子序列.X Y 各自字符串有顺序,但是不一定需要相邻. 最长公共子串(Longest Common Substring ):顺序相同,并且各个字符的位置也必须相邻. 最长公共子序列(Longest Common Subsequence,LCS ):顺序形同,各个字符的位置不一定相邻. 比如: 字符串 13455 与 245576 的最长公共子序列为455字符串 acdfg 与 adfc 的最长公共子序列为a
LCS(最长公共子序列)动规算法正确性证明
今天在看代码源文件求diff的原理的时候看到了LCS算法.这个算法应该不陌生,动规的经典算法.具体算法做啥了我就不说了,不知道的可以直接看<算法导论>动态规划那一章.既然看到了就想回忆下,当想到算法正确性的时候,发现这个算法的正确性证明并不好做.于是想了一段时间,里面有几个细节很trick,容易陷进去.想了几轮,现在把证明贴出来,有异议的可以留言一起交流. 先把一些符号和约定说明下: 假设有两个数组,A和B.A[i]为A的第i个元素,A(i)为由A的第一个元素到第i个元素所组成的前缀.m(i,
2016级算法第四次上机-F.AlvinZH的最“长”公共子序列
940 AlvinZH的最"长"公共子序列 思路 DP,难题. \(dp[i][j]\) :记录A的前i个字符与B的前j个字符变成相同需要的最小操作数. 初始化:dp[i][0] = i, dp[0][i] = i.分别代表i次删除or添加操作. 三种操作得到dp[i][j],取其中最小值: 替换:可能不需要替换,所以是dp[i-1][j-1]+Same(A[i-1],B[j-1]): 删除:dp[i-1][j]+1: 添加:dp[i][j-1]+1. 千万不要纠结操作的序列是A还是B
算法复习周------“动态规划之‘最长公共子序列’”&&《计蒜课》---最长公共子串题解
问题描述: 这个问题其实很容易理解.就是给你两个序列X={x1,x2,x3......xm} Y={y1,y2,y3......ym},要求找出X和Y的一个最长的公共子序列. 例:Xi={A, B, C, B, D, A} Yj={B, C, A, B, A} 求得 Z={B, C, B, A} 问题详解: 那么问题来了,我们如何去求解出最终的过程呢?既然是复习周,那我就开门见山,直接用DP算法去解决这个问题. 分析:该问题具有最优子结构的性质. 这里我们使用上面的那个例子:我们此时倒着
Java实现 蓝桥杯VIP 算法提高 最长公共子序列
算法提高 最长公共子序列 时间限制:1.0s 内存限制:256.0MB 问题描述 给定两个字符串,寻找这两个字串之间的最长公共子序列. 输入格式 输入两行,分别包含一个字符串,仅含有小写字母. 输出格式 最长公共子序列的长度. 样例输入 abcdgh aedfhb 样例输出 3 样例说明 最长公共子序列为a,d,h. 数据规模和约定 字串长度1~1000. import java.util.Scanner; public class 最长公共子序列 { public static String
算法导论-动态规划(最长公共子序列问题LCS)-C++实现
首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2 ,..., zk> 满足如下条件时称为X的子序列,即存在一个严格递增的X的下标序列<i1,i2 ,..., ik>,对于所有j = 1,2,...,k,满足xij = zj,例如,Z=<B,C,D,B>是X=<A,B,C,B,D,A,B>的子序列,对应的下标序列为&l
编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符串的子序列并一定要连续, 能够包含间隔. 即最长公共子序列问题(LCS, Longest Common Subsequence) 使用动态规划, 假设字符相等, 两个字符串就依次递增一位, 一直到字符串的结尾. 代码: /* * main.cpp * * Created on: 2014.7.17
动态规划算法——最长公共子序列问题(java实现)
已知序列X=(A,B,C,A,B,D,A)和序列Y=(B,A,D,B,A),求它们的最长公共子序列S. /* * LCSLength.java * Version 1.0.0 * Created on 2017年11月30日 * Copyright ReYo.Cn */ package reyo.sdk.utils.test.dy; /** * <B>创 建 人:</B>AdministratorReyoAut <BR> * <B>创建时间:</B&g
热门专题
logstash,底层通过定时器发现数据库发
cloud oauth2 自定义异常
flink temporal表底层实现
oc分类和协议的作用
持续集成交付 general
ORACLE 获取当前session
CE只能读DNF内存不能修改内存
logstash IP地址
计划任务 0xE0434352
linux switch_to三个参数
EF Include()方法
EBS FORM开发之给item增加超链接
unity 打包 动画不正常
USB_STATUS_REG没变
uniapp静默更新
matlab 无法获取附加功能
web转APP之后本地存储
qt获取其他进程窗体数据
VS2012弹不出窗口
curl 命令 es查看是否存在某个索引