首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
BP神经网络实现MINIST数据实验报告
2024-10-21
BP神经网络公式推导及实现(MNIST)
BP神经网络的基础介绍见:http://blog.csdn.net/fengbingchun/article/details/50274471,这里主要以公式推导为主. BP神经网络又称为误差反向传播网络,其结构例如以下图. 这样的网络实质是一种前向无反馈网络,具有结构清晰.易实现.计算功能强大等特点. BP神经网络有一个输入层.一个输出层.一个或多个隐含层.每一层上包括了若干个节点.每个节点代表一个神经元,同一层上各节点之间无不论什么耦合连接关系,层间各神经元之间实现全连接,即后一层(如输入层
【机器学习】BP神经网络实现手写数字识别
最近用python写了一个实现手写数字识别的BP神经网络,BP的推导到处都是,但是一动手才知道,会理论推导跟实现它是两回事.关于BP神经网络的实现网上有一些代码,可惜或多或少都有各种问题,在下手写了一份,连带着一些关于性能的分析也写在下面,希望对大家有所帮助. 加一些简单的说明,算不得理论推导,严格的理论推导还是要去看别的博客或书. BP神经网络是一个有监督学习模型,是神经网络类算法中非常重要和典型的算法,三层神经网络的基本结构如下: 这是最简单的BP神经网络结构,其运行机理是,一个特征向量的
【转载】BP神经网络
原文地址:http://blog.csdn.net/acdreamers/article/details/44657439 今天来讲BP神经网络,神经网络在机器学习中应用比较广泛,比如函数逼近,模式识别,分类,数据压缩,数据 挖掘等领域.接下来介绍BP神经网络的原理及实现. Contents 1. BP神经网络的认识 2. 隐含层的选取 3. 正向传递子过程 4. 反向传递子过程 5. BP神经网络的注意点 6. BP神经网络的C++实现 1. BP神经网络的认识
第一次实验报告:使用Packet Tracer分析HTTP数据包
目录 1 实验目的 2 实验内容 3. 实验报告 第一次实验报告:使用Packet Tracer分析HTTP数据包 1 实验目的 熟练使用Packet Tracer工具.分析抓到的HTTP数据包,深入理解:HTTP协议,包括语法.语义.时序. 2 实验内容 客户端向服务器发送请求报文,服务器向客户端发送响应报文.具体包含: 建立网络拓扑结构 配置参数 抓包 分析数据包 3. 实验报告 在写报告之前,先仔细阅读:将作业提交到班级博客的一些注意事项. (1)在博文开头给出你的个人信息 姓名 学号 班
Matlab实现BP神经网络预测(附实例数据及代码)
BP神经网络介绍 神经网络是机器学习中一种常见的数学模型,通过构建类似于大脑神经突触联接的结构,来进行信息处理.在应用神经网络的过程中,处理信息的单元一般分为三类:输入单元.输出单元和隐含单元. 顾名思义:输入单元接受外部给的信号与数据:输出单元实现系统处理结果的输出:隐含单元处在输入和输出单元之间,从网络系统外部是无法观测到隐含单元的结构的.除了上述三个处理信息的单元之外,神经元间的连接强度大小由权值等参数来决定. 图为BP神经网络结构:(图片均为截图来的笔记,蒟蒻手动狗头) 单个神经元的工作
数据挖掘系列(9)——BP神经网络算法与实践
神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了.神经网络有很多种:前向传输网络.反向传输网络.递归神经网络.卷积神经网络等.本文介绍基本的反向传输神经网络(Backpropagation 简称BP),主要讲述算法的基本流程和自己在训练BP神经网络的一些经验. BP神经网络的结构 神经网络就是模拟人的大脑的神经单元的工作方式,但进行了很大的简化,神经网络由很多神经网络层构成,而每一层又由许多单元组成,第一层叫输入层,最后一层叫输出层,中间的各层叫隐藏层,在BP神经网络中,只有
UFLDL实验报告3:Self-taught
Self-taught 自我学习器实验报告 1.Self-taught 自我学习实验描述 自我学习是无监督特征学习算法,自我学习意味着算法能够从未标注数据中学习,从而使机器学习算法能够获得更大数量的数据,因而更有可能取得更好的性能.在本实验中,我们将按照自我学习的步骤,使用稀疏自编码器和softmax分类器去构造一个手写数字分类器. 实现流程 Step 1 :产生训输入和测试样本集 Step 2 :训练稀疏自编码器 Step 3 :提取特征 Step 4 :训练和测试softMax分类器 Ste
bp神经网络及matlab实现
本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 . 第0节.引例 本文以Fisher的Iris数据集作为神经网络程序的測试数据集.Iris数据集能够在http://en.wikipedia.org/wiki/Iris_flower_data_set 找到.这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现须要对其进行分类.不同品种的Iris花的花萼长度.花萼
机器学习:从编程的角度理解BP神经网络
1.简介(只是简单介绍下理论内容帮助理解下面的代码,如果自己写代码实现此理论不够) 1) BP神经网络是一种多层网络算法,其核心是反向传播误差,即: 使用梯度下降法(或其他算法),通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐藏层(hidden layer)和输出层(output layer),每层包含多个神经元. 2)BP神经网络示例图 上图就是一个简单的三层BP神经网络.网络共有6个单元,O0用于表示阈值,O1.O2为输
神经网络中的BP神经网络和贝叶斯
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体应用与研究 9 结论 11 参考文献 12 1 贝叶斯网络在地学中的应用 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础.贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayes
使用HOG特征+BP神经网络进行车标识别
先挖个坑,快期末考试了,有空填上w 好了,今晚刚好有点闲,就把坑填上吧. //-------------------------------开篇------------------------------------------- 首先讲一下,这篇随笔不是讲HOG特征是什么,怎么提取(这种图像特征网上一搜一大把),也不是讲BP神经网络工作原理,发展史啥的(机器学习小白,ANN深究我也不懂).在这里我要讲的是,车标识别怎么code,怎么使用OpenCV自带的BP神经网络训练,以及识别.好了废话不多
机器学习:python使用BP神经网络示例
1.简介(只是简单介绍下理论内容帮助理解下面的代码,如果自己写代码实现此理论不够) 1) BP神经网络是一种多层网络算法,其核心是反向传播误差,即: 使用梯度下降法(或其他算法),通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐藏层(hidden layer)和输出层(output layer),每层包含多个神经元. 2)BP神经网络示例图 上图就是一个简单的三层BP神经网络.网络共有6个单元,O0用于表示阈值,O1.O2为输
BP神经网络在python下的自主搭建梳理
本实验使用mnist数据集完成手写数字识别的测试.识别正确率认为是95% 完整代码如下: #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy import scipy.special import matplotlib.pyplot # In[2]: class neuralNetwork: def __init__(self, inputNodes, hiddenNodes, outputNodes,learningRate)
详细BP神经网络预测算法及实现过程实例
1.具体应用实例.根据表2,预测序号15的跳高成绩. 表2 国内男子跳高运动员各项素质指标 序号 跳高成绩() 30行进跑(s) 立定三级跳远() 助跑摸高() 助跑4—6步跳高() 负重深蹲杠铃() 杠铃半蹲系数 100 (s) 抓举 () 1 2.24 3.2 9.6 3.45 2.15 140 2.8 11.0 50 2 2.33 3.2 10.3 3.75 2.2 120 3.4 10.9 70 3 2.24 3.0 9.0 3.5 2.2 140 3.5 11.4 50 4 2.32
机器学习(4):BP神经网络原理及其python实现
BP神经网络是深度学习的重要基础,它是深度学习的重要前行算法之一,因此理解BP神经网络原理以及实现技巧非常有必要.接下来,我们对原理和实现展开讨论. 1.原理 有空再慢慢补上,请先参考老外一篇不错的文章:A Step by Step Backpropagation Example 激活函数参考:深度学习常用激活函数之— Sigmoid & ReLU & Softmax 浅显易懂的初始化:CS231n课程笔记翻译:神经网络笔记 2 有效的Trick:神经网络训练中的Tricks之高效BP(
python手写bp神经网络实现人脸性别识别1.0
写在前面:本实验用到的图片均来自google图片,侵删! 实验介绍 用python手写一个简单bp神经网络,实现人脸的性别识别.由于本人的机器配置比较差,所以无法使用网上很红的人脸大数据数据集(如lfw数据集等等),所以我从google图片下载了一些中国明星的照片来作为本次实验的数据集. 训练数据集:5位中国的男明星(每个明星10张),6位中国的女明星(每个明星10张). 测试数据集:6张女生,6张男生 实验环境 win10 python3.5+opencv+dlib+PIL 说明:上面涉及到的
转载——关于bp神经网络
一.BP神经网络的概念 BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的.具体来说,对于如下的只含一个隐层的神经网络模型: (三层BP神经网络模型) BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层:第二阶段是误差的反向传播,从输出层到隐含层,最后到输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置. 二.BP神经网络的流程 在知道了BP神经网络的特点后,我们需要依据信号
BP神经网络—java实现(转载)
神经网络的结构 神经网络的网络结构由输入层,隐含层,输出层组成.隐含层的个数+输出层的个数=神经网络的层数,也就是说神经网络的层数不包括输入层.下面是一个三层的神经网络,包含了两层隐含层,一个输出层.其中第一层隐含层的节点数为3,第二层的节点数为2,输出层的节点数为1:输入层为样本的两个特征X1,X2. 图1 三层神经网络 在神经网络中每一个节点的都与上一层的所有节点相连,称为全连接.神经网络的上一层输出的数据是下一层的输入数据.在图中的神经网络中,原始的输入数据,通过第一层隐含层的计算得出的输
基于BP神经网络的字符识别研究
基于BP神经网络的字符识别研究 原文作者:Andrew Kirillov. http://www.codeproject.com/KB/cs/neural_network_ocr.aspx 摘要:本文通过对人工智能课程中BP神经网络的学习,基于一个神经网络的开源项目,开发实现了一个简易的字符识别系统,并给出了较为理想的实验效果.该系统可以在手写体,印刷体字符识别上有广泛的应用. 关键词:BP神经网络; 字符识别:开源:AForge.NET 0 引言 在处理光学字符识别(OCR)问题上有很多种方法
模式识别之ocr项目---(模板匹配&BP神经网络训练)
摘 要 在MATLAB环境下利用USB摄像头采集字符图像,读取一帧保存为图像,然后对读取保存的字符图像,灰度化,二值化,在此基础上做倾斜矫正,对矫正的图像进行滤波平滑处理,然后对字符区域进行提取分割出单个字符,识别方法一是采用模板匹配的方法逐个对字符与预先制作好的字符模板比较,如果结果小于某一阈值则结果就是模板上的字符:二是采用BP神经网络训练,通过训练好的net对待识别字符进行识别.最然后将识别结果通过MATLAB下的串口工具输出51单片机上用液晶显示出来. 关键字: 倾斜矫正,字符分割,模板
字符识别OCR研究一(模板匹配&BP神经网络训练)
摘 要 在MATLAB环境下利用USB摄像头採集字符图像.读取一帧保存为图像.然后对读取保存的字符图像,灰度化.二值化,在此基础上做倾斜矫正.对矫正的图像进行滤波平滑处理,然后对字符区域进行提取切割出单个字符.识别方法一是採用模板匹配的方法逐个对字符与预先制作好的字符模板比較,假设结果小于某一阈值则结果就是模板上的字符:二是採用BP神经网络训练.通过训练好的net对待识别字符进行识别.最然后将识别结果通过MATLAB下的串口工具输出51单片机上用液晶显示出来. keyword: 倾斜矫正.字符切
热门专题
服务器2880r安装教程教程
epoch网名有什么特殊含义
sql中表示字段不为null和空值
$.ajax delete请求接收不到参数
安装windows并保留文件设置和应用程序
hive批量添加分区
1、安装webvirtcloud
数据库查询列表和total
头文件中strcut重定义
android.studioapi文档下载
sap HR PA增强字段
sql server 2008升级r2
mybatis 注解怎么调用存储过程
Windows装docker还是虚拟机装docker
C 生成函数调用关系图
ios还支持hybird
dataframe某列转换成list
安装pcap ubuntu
阿里的edas hsf
vue app兼容问题