首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
bp 神经网络 数据预测 代码
2024-09-04
Matlab实现BP神经网络预测(附实例数据及代码)
BP神经网络介绍 神经网络是机器学习中一种常见的数学模型,通过构建类似于大脑神经突触联接的结构,来进行信息处理.在应用神经网络的过程中,处理信息的单元一般分为三类:输入单元.输出单元和隐含单元. 顾名思义:输入单元接受外部给的信号与数据:输出单元实现系统处理结果的输出:隐含单元处在输入和输出单元之间,从网络系统外部是无法观测到隐含单元的结构的.除了上述三个处理信息的单元之外,神经元间的连接强度大小由权值等参数来决定. 图为BP神经网络结构:(图片均为截图来的笔记,蒟蒻手动狗头) 单个神经元的工作
BP神经网络算法预测销量高低
理论以前写过:https://www.cnblogs.com/fangxiaoqi/p/11306545.html,这里根据天气.是否周末.有无促销的情况,来预测销量情况. function [ matrix,attributes ] = bp_preprocess( inputfile ) %% BP神经网络算法数据预处理,把字符串转换为0,1编码 % inputfile: 输入数据文件: % output: 转换后的0,1矩阵: % attributes: 属性和Label: %% 读取数据
用Python实现BP神经网络(附代码)
用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络. BP神经网络 全部代码 https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py 神经网络model 先介绍个三层的神经网络,如下图所示 输入层(input layer)有三个units( 为补上的bias,通常设为1) 表示第j层的第i个
R_Studio(神经网络)BP神经网络算法预测销量的高低
BP神经网络 百度百科:传送门 BP(back propagation)神经网络:一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络 #设置文件工作区间 setwd('D:\\dat') #读入数据 Gary=read.csv("sales_data.csv")[,2:5] #数据命名 library(nnet) colnames(Gary)<-c("x1","x2","x3","y&q
深度学习原理与框架-递归神经网络-时间序列预测(代码) 1.csv.reader(进行csv文件的读取) 2.X.tolist(将数据转换为列表类型)
1. csv.reader(csvfile) # 进行csv文件的读取操作 参数说明:csvfile表示已经有with oepn 打开的文件 2. X.tolist() 将数据转换为列表类型 参数说明:X可以是数组类型等等 代码说明:使用的是单层的rnn网络,迭代的终止条件为,第n的100次循环的损失值未降低次数超过3次,即跳出循环 数据说明:使用的是乘客的人数,训练集和测试集的分配为0.8和0.2, train_x使用的是前5个数据,train_y使用的是从2个数据到第6个数据,以此往后类推
BP神经网络人口预测程序(matlab实现)
自己测试人口预测的matlab实现: x=[54167 55196 56300 57482 58796 60266 61465 62828 64653 65994 67207 66207 65859 67295 69172 70499 72538 74542 76368 78534 80671 82992 85229 87177 89211 90
利用BP神经网络预测水道浅滩演变
论文 <基于现代技术的河道浅滩演变研究> 利用BP神经网络来预测浅滩演变 BP输出因子:浅滩的年平均淤积厚度以及浅滩上最小水深,是反映浅滩变化的两个基本指标,是确定浅滩航道尺度能否满足航行要求的依据. BP输入因子的选取与浅滩形成以及影响浅滩变化的诸因素有关.从河床演变理论及河流地貌动力学角度,影响浅滩断面最小水深和浅滩的年平均淤积厚度的主要因素有:(1)上游来流量(Q).来流过程(Q一t);(2)上游来沙量(G).输沙过程(G一t),泥沙组成(ds一Ps);(3)河段比降(J);(4)河床形
【机器学习】BP神经网络实现手写数字识别
最近用python写了一个实现手写数字识别的BP神经网络,BP的推导到处都是,但是一动手才知道,会理论推导跟实现它是两回事.关于BP神经网络的实现网上有一些代码,可惜或多或少都有各种问题,在下手写了一份,连带着一些关于性能的分析也写在下面,希望对大家有所帮助. 加一些简单的说明,算不得理论推导,严格的理论推导还是要去看别的博客或书. BP神经网络是一个有监督学习模型,是神经网络类算法中非常重要和典型的算法,三层神经网络的基本结构如下: 这是最简单的BP神经网络结构,其运行机理是,一个特征向量的
MATLAB神经网络(3) 遗传算法优化BP神经网络——非线性函数拟合
3.1 案例背景 遗传算法(Genetic Algorithms)是一种模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法. 其基本要素包括:染色体编码方法.适应度函数.遗传操作和运行参数. 非线性函数:$y=x_{1}^{2}+x_{2}^{2}$ 3.2 模型建立 3.2.1 算法流程 遗传算法优化使用遗传算法优化BP神经网络的权值和阔值,种群中的每个个体都包含了一 个网络所有权值和阔值,个体通过适应度函数计算个体适应度值,遗传算法通过选择.交叉和变异操作找到最优适应度值对应个
MATLAB神经网络(2) BP神经网络的非线性系统建模——非线性函数拟合
2.1 案例背景 在工程应用中经常会遇到一些复杂的非线性系统,这些系统状态方程复杂,难以用数学方法准确建模.在这种情况下,可以建立BP神经网络表达这些非线性系统.该方法把未知系统看成是一个黑箱,首先用系统输入输出数据训练BP神经网络,使网络能够表达该未知函数,然后用训练好的BP神经网络预测系统输出. 本章拟合的非线性函数为\[y = {x_1}^2 + {x_2}^2\]该函数的图形如下图所示. t=-5:0.1:5; [x1,x2] =meshgrid(t); y=x1.^2+x2.^2; s
BP神经网络算法推导及代码实现笔记zz
一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的,吭哧吭哧学总能学会,毕竟还有千千万万个算法等着你. 本文货很干,堪比沙哈拉大沙漠,自己挑的文章,含着泪也要读完! ▌二. 科普: 生物上的神经元就是接收四面八方的刺激(输入),然后做出反应(输出),给它一点就灿烂.仿生嘛,于是喜欢放飞自我的 某些人 就提出了人工神经网络.一切的基础-->人工神经单元,
详细BP神经网络预测算法及实现过程实例
1.具体应用实例.根据表2,预测序号15的跳高成绩. 表2 国内男子跳高运动员各项素质指标 序号 跳高成绩() 30行进跑(s) 立定三级跳远() 助跑摸高() 助跑4—6步跳高() 负重深蹲杠铃() 杠铃半蹲系数 100 (s) 抓举 () 1 2.24 3.2 9.6 3.45 2.15 140 2.8 11.0 50 2 2.33 3.2 10.3 3.75 2.2 120 3.4 10.9 70 3 2.24 3.0 9.0 3.5 2.2 140 3.5 11.4 50 4 2.32
基于steam的游戏销量预测 — PART 3 — 基于BP神经网络的机器学习与预测
语言:c++ 环境:windows 训练内容:根据从steam中爬取的数据经过文本分析制作的向量以及标签 使用相关:无 解释: 就是一个BP神经网络,借鉴参考了一些博客的解释和代码,具体哪些忘了,给出其中一个: http://blog.csdn.net/zhongkejingwang/article/details/44514073 代码: #include <iostream> #include <cstring> #include <cmath> #include
python构建bp神经网络_曲线拟合(一个隐藏层)__2.代码实现
IDE:jupyter 抽象程度可能不是那么高,以后再优化. 理论和代码实现的差距还是挺大的 数据集请查看 python构建bp神经网络(一个隐藏层)__1.数据可视化 部分代码预览 git上传.ipynb文件,并不能直接看,所以我上传了压缩包 注释都写的很详细,全部代码下载请查看码云
【年终分享】彩票数据预测算法(一):离散型马尔可夫链模型实现【附C#代码】
原文:[年终分享]彩票数据预测算法(一):离散型马尔可夫链模型实现[附C#代码] 前言:彩票是一个坑,千万不要往里面跳.任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已. 已经3个月没写博客了,因为业余时间一直在研究彩票,发现还是有很多乐趣,偶尔买买,娱乐一下.本文的目的是向大家分享一个经典的数学预测算法的思路以及代码.对于这个马尔可夫链模型,我本人以前也只是听说过,研究不深,如有错误,还请赐教,互相学习. 1.马尔可夫链预测模型介绍[1] 马尔可夫链是一个能够用数学
数据挖掘系列(9)——BP神经网络算法与实践
神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了.神经网络有很多种:前向传输网络.反向传输网络.递归神经网络.卷积神经网络等.本文介绍基本的反向传输神经网络(Backpropagation 简称BP),主要讲述算法的基本流程和自己在训练BP神经网络的一些经验. BP神经网络的结构 神经网络就是模拟人的大脑的神经单元的工作方式,但进行了很大的简化,神经网络由很多神经网络层构成,而每一层又由许多单元组成,第一层叫输入层,最后一层叫输出层,中间的各层叫隐藏层,在BP神经网络中,只有
机器学习:从编程的角度理解BP神经网络
1.简介(只是简单介绍下理论内容帮助理解下面的代码,如果自己写代码实现此理论不够) 1) BP神经网络是一种多层网络算法,其核心是反向传播误差,即: 使用梯度下降法(或其他算法),通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐藏层(hidden layer)和输出层(output layer),每层包含多个神经元. 2)BP神经网络示例图 上图就是一个简单的三层BP神经网络.网络共有6个单元,O0用于表示阈值,O1.O2为输
BP神经网络(原理及MATLAB实现)
人工神经网络概述: 人工神经元模型: 神经网络的分类: 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络: 按照学习方式,可以分为:有导师学习神经网络 vs. 无导师学习神经网络: 按照实现功能,可以分为:拟合(回归)神经网络 vs. 分类神经网络. 数据归一化:将数据映射到[0, 1]或[-1, 1]区间或其他的区间. 数据归一化的原因: 1.输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢.训练时间长.2.数据范围大的输入在模式分类中的作用可能会偏
使用HOG特征+BP神经网络进行车标识别
先挖个坑,快期末考试了,有空填上w 好了,今晚刚好有点闲,就把坑填上吧. //-------------------------------开篇------------------------------------------- 首先讲一下,这篇随笔不是讲HOG特征是什么,怎么提取(这种图像特征网上一搜一大把),也不是讲BP神经网络工作原理,发展史啥的(机器学习小白,ANN深究我也不懂).在这里我要讲的是,车标识别怎么code,怎么使用OpenCV自带的BP神经网络训练,以及识别.好了废话不多
机器学习:python使用BP神经网络示例
1.简介(只是简单介绍下理论内容帮助理解下面的代码,如果自己写代码实现此理论不够) 1) BP神经网络是一种多层网络算法,其核心是反向传播误差,即: 使用梯度下降法(或其他算法),通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入层(input).隐藏层(hidden layer)和输出层(output layer),每层包含多个神经元. 2)BP神经网络示例图 上图就是一个简单的三层BP神经网络.网络共有6个单元,O0用于表示阈值,O1.O2为输
热门专题
golang os/exec 交互式
启用集成windows验证
标准正确输出设备的描述符为0
kendoui Grid绑定菜单树
gdb ffmpeg命令行调试
stm32 fatfs怎么用
wireshark捕获过滤器
qt 注册全局快捷键
keep-alive 缓存router-view 原理
聚簇索引非聚簇索引 谁更快
thymeleaf 自定义变量动态赋值
sqlserver 取某月总天数函数
ceph bucket shadow和multipart
s 4 faglflext无法增强字段
webconfig怎么读
pta通讯录的录入与显示实验报告
android实时美颜
WebDriverAgent 使用
dz3.5伪静态代码
python圆形进度条