为了使得方案的形式较为单一,不妨强制物品体积为1或$\ge \lceil\frac{w}{2}\rceil$,那么假设最终有$x$个1且$\ge \lceil\frac{w}{2}\rceil$的物品体积依次为$a_{1},a_{2},...,a_{n-x}$,不难发现方案数即为$\sum_{i=1}^{n-x}{x\choose w-a_{i}}$ 暴力枚举$x$,并不妨再强制方案数恰为$k$(而不是模$p$意义下),此时即选不超过$n-x$个${x\choose i}$使得其和恰为$k$(其