Problem Description There are another kind of Fibonacci numbers: F(0) = 7, F(1) = 11, F(n) = F(n-1) + F(n-2) (n>=2). Input Input consists of a sequence of lines, each containing an integer n. (n < 1,000,000). Output Print the word "yes" if
地址:http://acm.nyist.net/JudgeOnline/problem.php?pid=102 //a^b mod c=(a mod c)^b mod c很容易设计出一个基于二分的递归算法. #include<stdio.h> #include<stdlib.h> //快速幂算法,数论二分 long long powermod(int a,int b, int c) //不用longlong就报错,题目中那个取值范围不就在2的31次方内 { long long t;
求模和求余的总体计算步骤如下: 1.求整数商 c = a/b 2.计算模或者余数 r = a - c*b 求模和求余的第一步不同,求余在取c的值时向0方向舍入;取模在计算c的值时向无穷小方向舍入. C语言实现 //取余 int rem(int a, int b) { int c = a * 1.0 / b; return (a - c * b); } //求模 int mod(int a, int b) { int c = floor(a * 1.0 / b); //#include <mat
eq相等 ne.neq不相等, gt大于, lt小于 gte.ge大于等于 lte.le 小于等于 not非 mod求模 is [not] div by是否能被某数整除 is [not] even是否为偶数 is [not] even by $b即($a / $b) % 2 == 0 is [not] odd是否为奇 is not odd by $b即($a / $b) % 2 != 0 示例: equal/ not equal/ greater than