1. 简单列子: 一个损失函数L与参数x的关系表示为: 则 加上L2正则化,新的损失函数L为:(蓝线) 最优点在黄点处,x的绝对值减少了,但依然非零. 如果加上L1正则化,新的损失函数L为:(粉线) 最优点为红点,变为0,L1正则化让参数的最优值变为0,更稀疏. L1在江湖上人称Lasso,L2人称Ridge. 两种正则化,能不能将最优的参数变为0,取决于最原始的损失函数在0点处的导数,如果原始损失函数在0点处的导数不为0,则加上L2正则化之后(+2Cx),导数依然不为0.而加上L1正则化(导数