首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
caffe.Classifier 再训练
2024-11-04
caffe使用(1)
caffe使用 caffe是一个卓越的CNN框架 caffe源码是Cpp语言的,基于一些外部的库,包括BLAS(矩阵计算),CUDA(GPU驱动),gflags,glog,boost,protobuf,hdf5,leveldb,lmdb等. 只要各个以来都安装完毕,编译的时候修改下caffe自带的Makefile.config(路径和编译选项的修改),即可编译整个工程. caffe代码文件夹主要包括: build 所有编译好的文件存放位置 data 数据文件夹 docs 教程和说明文件
【caffe】用训练好的imagenet模型分类图像
因为毕设需要,我首先是用ffmpeg抽取某个宠物视频的关键帧,然后用caffe对这个关键帧中的物体进行分类. 1.抽取关键帧的命令: E:\graduation design\FFMPEG\bin>ffmpeg -i .\.mp4 -vf select='eq(pict_type\,I)',setpts='N/(25*TB)' .\%09d.jpg 2.用python编写脚本,利用在imagenet上训练的模型分类视频帧中的物体. 抽取得到的视频关键帧都存放在文件夹"/home/sunsh
基于英特尔® 至强 E5 系列处理器的单节点 Caffe 评分和训练
原文链接 在互联网搜索引擎和医疗成像等诸多领域,深度神经网络 (DNN) 应用的重要性正在不断提升. Pradeep Dubey 在其博文中概述了英特尔® 架构机器学习愿景. 英特尔正在实现 Pradeep Dubey 博文中勾勒的机器学习愿景,并正在着手开发软件解决方案以加速执行机器学习工作负载.这些解决方案将包含在未来版本的英特尔® 数学核心函数库(英特尔® MKL)和英特尔® 数据分析加速库(英特尔® DAAL)中. 本技术预览版展示了配备我们正在开发的软件后,英特尔平台将有望实现的性能.
【caffe】执行训练
@tags caffe 训练 是在windows平台上. 主要是使用/caffe.exe,配合动作参数train,以及指定solver文件.e.g.: cd %caffe_root% %caffe_build%\caffe.exe train --solver=examples\mnist\lenet_solver.prototxt
win10 caffe python Faster-RCNN训练自己数据集(转)
一.制作数据集 1. 关于训练的图片 不论你是网上找的图片或者你用别人的数据集,记住一点你的图片不能太小,width和height最好不要小于150.需要是jpeg的图片. 2.制作xml文件 1)LabelImg 如果你的数据集比较小的话,你可以考虑用LabelImg手工打框https://github.com/tzutalin/labelImg.关于labelimg的具体使用方法我在这就不详细说明了,大家可以去网上找一下.labelimg生成的xml直接就能给frcnn训练使用. 2)自己制
caffe 利用VGG训练自己的数据
写这个是因为有童鞋在跑VGG的时候遇到各种问题,供参考一下. 网络结构 以VGG16为例,自己跑的细胞数据 solver.prototxt: net: "/media/dl/source/Experiment/cell/test/vgg/vgg16.prototxt" test_iter: test_interval: base_lr: 0.0001 lr_policy: "step" gamma: 0.1 stepsize: display: max_iter:
【神经网络与深度学习】深度学习实战——caffe windows 下训练自己的网络模型
1.相关准备 1.1 手写数字数据集 这篇博客上有.jpg格式的图片下载,附带标签信息,有需要的自行下载,博客附带百度云盘下载地址(手写数字.jpg 格式):http://blog.csdn.net/eddy_zheng/article/details/50496194 1.2深度学习框架 本实战基于caffe深度学习框架,需自行参考相关博客搭建环境,这里不再对如何搭建环境作介绍. 2.数据准备 2.1 准备训练与验证图像 准备好你想训练识别的图像数据之后,将其划分为训练集与验证集,并准备好对应
caffe + ssd网络训练过程
參考博客:https://blog.csdn.net/xiao_lxl/article/details/79106837 1获取源代码:git clone https://github.com/weiliu89/caffe.git2 进入目录中 :cd caffe 3,git checkout ssd 主要参考 https://github.com/weiliu89/caffe/tree/ssd 获取SSD的代码,下载完成后有一个caffe文件夹 git clone https://github
【caffe】mnist训练日志
@tags caffe 前面根据train_lenet.sh改写了train_lenet.py后,在根目录下执行它,得到一系列输出,内容如下: I1013 10:05:16.721294 1684 caffe.cpp:218] Using GPUs 0 I1013 10:05:17.525264 1684 caffe.cpp:223] GPU 0: GeForce GTX 970M I1013 10:05:17.790920 1684 common.cpp:36] System entropy
Caffe初试(二)windows下的cafee训练和测试mnist数据集
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都
Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了google的).第二个原因是数据太大了... 我去网上找了
Caffe学习系列(四)之--训练自己的模型
前言: 本文章记录了我将自己的数据集处理并训练的流程,帮助一些刚入门的学习者,也记录自己的成长,万事起于忽微,量变引起质变. 正文: 一.流程 1)准备数据集 2)数据转换为lmdb格式 3)计算均值并保存(非必需) 4)创建模型并编写配置文件 5)训练和测试 二.实施 (一)准备数据集 在深度学习中,数据集准备往往是最难的事情,因为数据涉及隐私.商业等各方面,获取难度很大,不过有很多科研机构公布了供学习使用的数据集,我们可以在网上下载.还有一种获取的途径是论文,查阅国内外相关的论文,看他们
转 Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了google的).第二个原因是数据太大了... 我去网上找了
如何用Caffe训练自己的网络-探索与试验
现在一直都是用Caffe在跑别人写好的网络,如何运行自定义的网络和图片,是接下来要学习的一点. 1. 使用Caffe中自带的网络模型来运行自己的数据集 参考 [1] :http://www.cnblogs.com/denny402/p/5083300.html,下面几乎是全文转载,有部分对自己踩过的坑的补充,向原作者致敬! 一.准备数据 我去网上找了一些其它的图片来代替,共有500张图片,分为大巴车.恐龙.大象.鲜花和马五个类,每个类100张.需要的同学,可到我的网盘下载:http://pan.
LARC Caffe笔记(二) 训练自己的img
继看完 贺完结!CS231n官方笔记 上一次已经成功跑起caffe自带的例程,mnist和cifar10 但是终归用的是里面写好的脚本,于是打算训练自己的img 〇.目标 准备好food图片3类(出于数据安全考虑,使用food101公开数据集) 每一类都是没有resize的1000张图片 现在的任务就是: 将这三类food分类 通过这个小任务应该可以熟练caffe使用 小问题列表: (1)这个后面的数字只要不一样就行了吧,用于表示类别? 答:ML中类别都是用数字表示的,而且必须是连续的,这是so
实践详细篇-Windows下使用Caffe训练自己的Caffemodel数据集并进行图像分类
三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分类.第一篇<实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >有讲过使用Caffe的背景.所以这篇记录使用的素材就是12306的验证码来进行图像识别分类. 1.准备素材 由于这里抓取到的验证码是整合后的大图.就是8张小图片合成的.由于12306的验证码大图并
caffe 如何训练自己的数据图片
申明:此教程加工于caffe 如何训练自己的数据图片 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了google的).第二个原因是数据太大了... 我去网上找了一些其它的图片来代替,共有500张图片,分为大巴车.恐龙.大象.鲜花和马五个类,每个类100张.需要的同学,可到
利用caffe的solverstate断点训练
你可以从系统 /tmp 文件夹获取,名字是什么 caffe.ubuntu.username.log.INFO.....之类 =============================================================================================================== caffe在训练的时候不仅会保存当前模型的参数(也就是caffemodel)文件,也会把训练到当前状态信息全部保存下来,这个文件就是solverstat
Caffe学习系列(12):训练和测试自己的图片--linux平台
Caffe学习系列(12):训练和测试自己的图片 学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了goo
caffe 训练測试自己的数据集
简单记录一下自己使用caffe的过程和遇到的一些问题. 下载caffe以及安装不具体叙述了. 可參照 http://caffe.berkeleyvision.org/installation.html. 以下准备数据集和训练的过程參照imagenet的过程:可參考 http://drubiano.github.io/2014/06/18/caffe-custom-data.html 1. 将数据集分为train和validate, 分别写到train.txt和val.txt中. 格式每一行文件
caffe(12) 训练自己的数据
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了google的).第二个原因是数据太大了... 我去网上找了
热门专题
wireshark常用过滤命令
winscp命令行启动服务
Windows opendr pip失败
wpf 动画后改变不了
mingw安装教程 win10
uwsgi启动配置文件 ini
c# codefirst 字段名,表名转大写
Linux 橘子播放器
如何永久关闭swap分区
k8s 容器内无法访问service
C# CSRedisCore 多数据库
linux INADDR_ANY定义在哪个头文件
react的super的理解
mysql 查询 本班级排在前边其他班级拍后边
Redmine用户组是哪个表
vs中没有accessdatasource控件
layui js上传360浏览器不兼容问题
win10同时安装idea和android studio
算法与数据结构体系课|百度云下载
android12 自动insmod WiFi