本文主要参考caffe官方文档[<Fine-tuning a Pretrained Network for Style Recognition>](http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/02-fine-tuning.ipynb) 是第二篇案例.笔者对其进行了为期一周的断断续续的研究,笔者起先对python/caffe并不了解+英语不好,阅读+理解的时间有点长,前前后后过了不下十遍终于从这第二篇文档看
Goal of training a model is to find a set of weights and biases that have low loss, on average, across all examples. —— Descending into ML: Training and Loss 注释:教程中的 loss ≠ 平均方差,而是指单个 labeled example 的方差(也就是误差 loss ),这里的 reducing loss 是指减小整体的误差(就是 MS
说是实现,其实并不是我自己实现的 亮出代码:https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/neural_style_transfer # -*- coding: utf-8 -*- from __future__ import division from torch.backends import cudnn from torch.autograd import Variable from