首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
candence写数字代码
2024-10-07
[ Skill ] Cadence Skill 语言入门
https://www.cnblogs.com/yeungchie/ 写个大笔记,低速更新中 ... Cadence Skill Cadence 提供二次开发的 SKILL 语言,它是一种基于通用人工智能语言- Lisp 的交互式高级编程语言 ( LISP 即 List Processing-表处理,是最早和最重要的符号处理编程语言之一,它于1958年由美国的 J. McCarthy 提出,LISP 在人工智能AI方面获得广泛应用 ) . SKILL 语言支持一套类似 C 语言的语法,大大降低了
使用神经网络来识别手写数字【译】(三)- 用Python代码实现
实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNIST数据.如果有 github 账号,你可以将这些代码库克隆下来, git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 或者你可以到这里 下载. 顺便说一下, 当我先前说到 MNIST 数据集时,我说
php求和为s的两个数字(多复制上面写的代码,有利于检查错误)(由浅入深,先写简单算法,做题的话够用就行)
php求和为s的两个数字(多复制上面写的代码,有利于检查错误)(由浅入深,先写简单算法,做题的话够用就行) 一.总结 1.多复制上面写的代码,有利于检查错误 2.一层循环就解决了,前后两个指针,和大了就后指针前移,和小了就前指针后移 3.由浅入深,先写简单算法,做题的话够用就行 4.php中的PHP_INT_MAX 二.php求和为s的两个数字 题目描述 输入一个递增排序的数组和一个数字S,在数组中查找两个数,是的他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的. 输出描述:
4.2tensorflow多层感知器MLP识别手写数字最易懂实例代码
自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1 多层感知器MLP(multilayer perception) 1.1.1 多层感知器的结构 除了输入输出层,它中间可以有多个隐层,最简单的MLP只含一个隐层,即三层的结构.,假设输入层用向量X表示,则隐藏层的输出就是 f (W1X+b1),W1是权重(也叫连接系数),b1是偏置,函数f 可以是常用的
【转】机器学习教程 十四-利用tensorflow做手写数字识别
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基于tensorflow来介绍和演示 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址 什么是tensorflow tensor意思是张量,flow是流. 张量原本是力学里的术语,表示弹性介质中各点应力状态.在数学中,张量表示的是一种广义的"数量",0阶张量
学习OpenCV——SVM 手写数字检测
转自http://blog.csdn.net/firefight/article/details/6452188 是MNIST手写数字图片库:http://code.google.com/p/supplement-of-the-mnist-database-of-handwritten-digits/downloads/list 其他方法:http://blog.csdn.net/onezeros/article/details/5672192 使用OPENCV训练手写数字识别分类器 1,下载训
C#中调用Matlab人工神经网络算法实现手写数字识别
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化 投影 矩阵 目标定位 Matlab 手写数字图像识别简介: 手写阿拉伯数字识别是图像内容识别中较为简单的一个应用领域,原因有被识别的模式数较少(只有0到9,10个阿拉伯数字).阿拉伯数字笔画少并且简单等.手写阿拉伯数字的识别采用的方法相对于人脸识别.汉字识别等应用领域来说可以采用更为灵活的方法,例如基于规则的方法.基于有限状态自动机的方法.基于统计的方法和基于神
Python 手写数字识别-knn算法应用
在上一篇博文中,我们对KNN算法思想及流程有了初步的了解,KNN是采用测量不同特征值之间的距离方法进行分类,也就是说对于每个样本数据,需要和训练集中的所有数据进行欧氏距离计算.这里简述KNN算法的特点: 优点:精度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 适用数据范围:数值型和标称型(具有有穷多个不同值,值之间无序) knn算法代码: #-*- coding: utf-8 -*- from numpy import * import operatorimport
在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类
手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*2000,有0-9的10个数字,每5行为一个数字,总共50行,共有5000个手写数字.在opencv3.0版本中,图片存放位置为 /opencv/sources/samples/data/digits.png 我们首先要做的,就是把这5000个手写数字,一个个截取出来,每个数字块大小为20*20.直接将
CNN 手写数字识别
1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性,以下面这个一维的卷积为例子: 第一个特性是稀疏连接.可以看到, layer m 上的每一个节点都只与 layer m-1 对应区域的三个节点相连接.这个局部范围也叫感受野.第二个特性是相同颜色的线条代表了相同的权重,即权重共享.这样做有什么好处呢?一方面权重共享可以极大减小参数的数目,学习起来更加有
MNIST手写数字数据库
手写数字库很容易建立,但是总会很浪费时间.Google实验室的Corinna Cortes和纽约大学柯朗研究所的Yann LeCun建有一个手写数字数据库,训练库有60,000张手写数字图像,测试库有10,000张. 请访问原站 http://yann.lecun.com/exdb/mnist/ 该数据库在一个文件中包含了所有图像,使用起来有所不便.如果我把每个图像分别保存,成了图像各自独立的数据库. 并在Google Code中托管. 如果你有需要,欢迎在此下载: http://yann.le
【机器学习】BP神经网络实现手写数字识别
最近用python写了一个实现手写数字识别的BP神经网络,BP的推导到处都是,但是一动手才知道,会理论推导跟实现它是两回事.关于BP神经网络的实现网上有一些代码,可惜或多或少都有各种问题,在下手写了一份,连带着一些关于性能的分析也写在下面,希望对大家有所帮助. 加一些简单的说明,算不得理论推导,严格的理论推导还是要去看别的博客或书. BP神经网络是一个有监督学习模型,是神经网络类算法中非常重要和典型的算法,三层神经网络的基本结构如下: 这是最简单的BP神经网络结构,其运行机理是,一个特征向量的
深度学习-使用cuda加速卷积神经网络-手写数字识别准确率99.7%
源码和运行结果 cuda:https://github.com/zhxfl/CUDA-CNN C语言版本参考自:http://eric-yuan.me/ 针对著名手写数字识别的库mnist,准确率是99.7%,在几分钟内,CNN的训练就可以达到99.60%左右的准确率. 参数配置 网络的配置使用Config.txt进行配置##之间是注释,代码会自动过滤掉,其他格式参考如下: #Comment# #NON_LINEARITY CAN = NL_SIGMOID , NL_TANH , NL_RELU
【深度学习系列】PaddlePaddle之手写数字识别
上周在搜索关于深度学习分布式运行方式的资料时,无意间搜到了paddlepaddle,发现这个框架的分布式训练方案做的还挺不错的,想跟大家分享一下.不过呢,这块内容太复杂了,所以就简单的介绍一下paddlepaddle的第一个"hello word"程序----mnist手写数字识别.下一次再介绍用PaddlePaddle做分布式训练的方案.其实之前也写过一篇用CNN识别手写数字集的文章,是用keras实现的,这次用了paddlepaddle后,正好可以简单对比一下两个框架的优劣.
【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识 为什么要用神经网络? 特征提取的高效性.
机器学习(二)-kNN手写数字识别
一.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 1,距离可以是欧式距离,夹角余弦距离等等. 2,k值不能选择太大或太小,k值含义,是最后选取距离最近的前k个参照点的类标,统计次数最多的记为待测点类标. 二.关于kNN实现手写数字识别 1,手写数字训练集测试集的数据格式,本篇文章说明的是<机器学习实战>书提供的文件,将所有数字已经转化成32*32灰度矩阵. 三.代码结构构成 1,data_Prepare.py
利用神经网络算法的C#手写数字识别
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70.64 KB (原始地址) :nnhandwrittencharreccssource.zip 介绍 这是一篇基于Mike O'Neill 写的一篇很棒的文章:神经网络的手写字符识别(Neural Network for Recognition of Handwritten Digits)而给出的一个
Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen
TensorFlow实战之Softmax Regression识别手写数字
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.csdn.net/qq_37608890/article/details/79343860). 本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关概念 1.MNIST MNIST(Mixed
使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNIST手写数字库对CNN(卷积神经网络)进行训练,准确度达到98%以上时,再准备独家手写数字10个.画图软件编辑的数字10个共计20个,让训练好的CNN进行识别,考察其识别准确度. 调试代码: 坑1:ModuleNotFoundError: No module named 'google' 解决:pi
TensorFlow实现Softmax Regression识别手写数字中"TimeoutError: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败”问题
出现问题: 在使用TensorFlow实现MNIST手写数字识别时,出现"TimeoutError: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败"问题. 截图如下: 问题原因: 出现该问题的原因可能是由于自身网络问题或者mnist数据集下载网页连接不成功导致. 解决办法: 进入MNIST数据下载网页:http://yann.lecun.com/exdb/mnist/ 将数据下载到相应的路径下,参考如图: 代码中显示将数据下载至
热门专题
java内部类在什么场景使用
Android4.4.2启用无线网络默认打开
iptablesNat转换
QML 用Row填充Column
jenkins java -jar &问题
华为隐私空间不允许使用USB调试
未能创建 Visual C# 2015编译器
navicat中查询文件保存地址怎么修改
libreoffice 卸载
为什么typora上传图片成功后不显示图片
compress去掉字符
pooling层的ksp计算
C# 生成RSA 统一为 pkcs8的加签算法
VS 安装新版 版本更新 内容没更新
c# sqlite 创建带密码
微信小程序自定义属性有时候获取undefined
vue基本命令页面数据渲染
layer.open 一个页面弹两个弹框设置大小
ubuntu20.04搭建pptp服务器
python计算a b单行输出