首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
cnn卷积神经网络卷积过程公式
2024-08-20
卷积神经网络CNN的原理(二)---公式推导
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含多个由卷积层和池化层构成的特征抽取器.在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接.在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核.卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值.共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险.子采样也叫
Python3 卷积神经网络卷积层,池化层,全连接层前馈实现
# -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli """ import numpy as np; def ReLU(x): return max(0,x); def logistic(x): return 1/(1 + np.exp(-x)); def logistic_derivative(x): return logistic(x)*(
深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, strides表示步长,分别表示为样本数,长,宽,通道数,padding表示补零操作 2. tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 对数据进行池化操作 参数说明:x表示输入数据,ksize表示卷
卷积神经网络CNN与深度学习常用框架的介绍与使用
一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器就是要找到一条直线把这两类样本点分开. 对于非线性可分的样本,可以加一些kernel核函数或者特征的映射使其成为一个曲线或者一个曲面将样本分开.但为什么效果不好,主要原因是你很难保证样本点的分布会如图所示那么规则,我们无法控制其分布,当绿色的点中混杂几个蓝色的点,就很难分开了,及时用曲线可以分开,这
深度学习之卷积神经网络CNN及tensorflow代码实例
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂. 我们称 其连续的定义为: 其离散的定义为: 这两个式子有一个共同的特征: 这个特征有什么意义呢? 我们令,当n变化时,只需要平移这条直线 在上面的公式中,是一个函数,也是一个函数,例如下图所示即 下图即 根据卷积公式,求即将变号为,然后翻转变成,若我们计算的卷积值, 当n=0时: 当n=1时:
卷积神经网络CNN的原理(一)---基本概念
什么是卷积神经网络呢?这个的确是比较难搞懂的概念,特别是一听到神经网络,大家脑海中第一个就会想到复杂的生物学,让人不寒而栗,那么复杂啊.卷积神经网络是做什么用的呢?它到底是一个什么东东呢? 卷积神经网络的灵感源一种生物进程,其中神经元之间的联结模式和动物视觉皮层组织非常相似.所以发明者把它叫做卷积神经网络.只是做了类比,没有生物学知识的同学不要怕,只要有良好的数学基础(这个也不是很容易喔). 下面看看各方神圣对CNN的概念的定义吧: 科学的说法: 卷积神经网络(Convolutional Neu
CNN学习笔记:卷积神经网络
CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作和非线性激活函数的映射等一系列操作的层层堆叠,将高层语义信息逐层由原始信息中抽取出来,逐层抽象. 将信息逐渐抽象出来的过程称为前馈运算(Feed-Forward).通过计算预测值与真实值之间的误差和损失,凭借反向传播算法(Back-Propagation algorithm)将误差或损失由最后一层逐
卷积神经网络基础(CNN)【转载】
作者: Sanjay Chan [ http://blog.csdn.net/chenzomi ] 背景 之前在网上搜索了好多好多关于CNN的文章,由于网络上的文章很多断章取义或者描述不清晰,看了很多youtobe上面的教学视频还是没有弄懂,最后经过痛苦漫长的煎熬之后对于神经网络和卷积有了粗浅的了解. 于是在这里记录下所学到的知识,关于CNN 卷积神经网络,需要总结深入的知识有很多: 人工神经网络 ANN 如果对于人工神经网络或者神经元模型不是太了解,建议先去了解<人工神经网络ANN>. 卷积
直白介绍卷积神经网络(CNN)【转】
英文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ 中文译文:http://mp.weixin.qq.com/s/X81gDdlXnte-H0lLEvsJGg 编译: Python开发者 - MentosZ 英文:ujjwalkarn.me http://blog.jobbole.com/113819/ 什么是卷积神经网络,它为何重要? 卷积神经网络(也称作 ConvNets 或 CNN)是神经网络的一种
Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例
CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras.layers import Dense,Activation,Conv2D,MaxPooling2D,Flatten from keras.models import Model,Sequential from keras.datasets import mnist from keras.utils
Tensorflow卷积神经网络[转]
Tensorflow卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 工作原理 卷积是图像处理中一种基本方法. 卷积核是一个nxn的矩阵通常n取奇数, 这样矩阵就有了中心点和半径的概念. 对图像中每个点取以其为中心的n阶方阵, 将该方阵与卷积核中
【原创 深度学习与TensorFlow 动手实践系列 - 3】第三课:卷积神经网络 - 基础篇
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实例:卷积神经网络MNIST分类 期待目标: 1. 清楚神经网络优化原理,掌握反向传播计算. 2. 掌握卷积神经网络卷积层的结构特点,关键参数,层间的连接方式. 3. 了解不同卷积神经网络功能层的作用,会进行简单的卷积神经网络结构设计. 4. 能够运行TensorFlow卷积神经网络 MNIST.
深度学习、图像识别入门,从VGG16卷积神经网络开始
刚开始接触深度学习.卷积神经网络的时候非常懵逼,不知道从何入手,我觉得应该有一个进阶的过程,也就是说,理应有一些基本概念作为奠基石,让你有底气去完全理解一个庞大的卷积神经网络: 本文思路: 一.我认为学习卷积神经网络必须知道的几个概念: 1.卷积过程: 我们经常说卷积神经网络卷积神经网络,到底什么才是卷积?网络层卷积过程到底怎么实现?我们在这里借鉴了另一位博客大牛的动态图来给大家演示一下, 图作者文章在此: http://blog.csdn.net/silence1214/article/det
Convolutional Neural Networks卷积神经网络
转自:http://blog.csdn.net/zouxy09/article/details/8781543 9.5.Convolutional Neural Networks卷积神经网络 卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点.它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量.该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程.卷积网络是为识别
tensorflow学习笔记——图像识别与卷积神经网络
无论是之前学习的MNIST数据集还是Cifar数据集,相比真实环境下的图像识别问题,有两个最大的问题,一是现实生活中的图片分辨率要远高于32*32,而且图像的分辨率也不会是固定的.二是现实生活中的物体类别很多,无论是10种还是100种都远远不够,而且一张图片中不会只出现一个种类的物体.为了更加贴近真实环境下的图像识别问题,由李飞飞教授带头整理的ImageNet很大程度上解决了这个问题. ImageNet是一个基于WordNet的大型图像数据库,在ImageNet中,将近1500万图片被关联到了W
深度学习:卷积神经网络(convolution neural network)
(一)卷积神经网络 卷积神经网络最早是由Lecun在1998年提出的. 卷积神经网络通畅使用的三个基本概念为: 1.局部视觉域: 2.权值共享: 3.池化操作. 在卷积神经网络中,局部接受域表明输入图像与隐藏神经元的连接方式.在图像处理操作中采用局部视觉域的原因是:图像中的像素并不是孤立存在的,每一个像素与它周围的像素都有着相互关联,而并不是与整幅图像的像素点相关,因此采用局部视觉接受域可以类似图像的此种特性. 另外,在图像数据中存在大量的冗余数据,因此在图像处理过程中需要对这些冗余数据进行处理
YJango的卷积神经网络——介绍
原文地址:https://zhuanlan.zhihu.com/p/27642620 如果要提出一个新的神经网络结构,首先就需要引入像循环神经网络中“时间共享”这样的先验知识,降低学习所需要的训练数据需求量. 而卷积神经网络同样也引入了这样的先验知识:“空间共享”.下面就让我们以画面识别作为切入点,看看该先验知识是如何被引入到神经网络中的. 目录 视觉感知 画面识别是什么 识别结果取决于什么 图像表达 画面识别的输入 画面不变形 前馈神经网络做画面识别的不足 卷积神经网络做画面识别 局部连接 空
卷积神经网络(CNN)的训练过程
卷积神经网络的训练过程 卷积神经网络的训练过程分为两个阶段.第一个阶段是数据由低层次向高层次传播的阶段,即前向传播阶段.另外一个阶段是,当前向传播得出的结果与预期不相符时,将误差从高层次向底层次进行传播训练的阶段,即反向传播阶段.训练过程如图4-1所示.训练过程为: 1.网络进行权值的初始化: 2.输入数据经过卷积层.下采样层.全连接层的向前传播得到输出值: 3.求出网络的输出值与目标值之间的误差: 4.当误差大于我们的期望值时,将误差传回网络中,依次求得全连接层,下采样层,卷积层的误差.各层的
Deep learning with Theano 官方中文教程(翻译)(四)—— 卷积神经网络(CNN)
供大家相互交流和学习,本人水平有限,若有各种大小错误,还请巨牛大牛小牛微牛们立马拍砖,这样才能共同进步!若引用译文请注明出处http://www.cnblogs.com/charleshuang/. 本文译自:http://deeplearning.net/tutorial/lenet.html 文章中的代码截图不是很清晰,可以去上面的原文网址去查看. 1.动机 卷积神经网络(CNN)是多层感知机(MLP)的一个变种模型,它是从生物学概念中演化而来的.从Hubel和Wiesel早期对猫的视觉皮层
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不吝指正
卷积神经网络CNN全面解析
卷积神经网络(CNN)概述 从多层感知器(MLP)说起 感知器 多层感知器 输入层-隐层 隐层-输出层 Back Propagation 存在的问题 从MLP到CNN CNN的前世今生 CNN的预测过程 卷积 下采样 光栅化 多层感知器预测 CNN的参数估计 多层感知器层 光栅化层 池化层 卷积层 最后一公里:Softmax CNN的实现 思路 其他 最近仔细学习了一下卷积神经网络(CNN,Convolutional Neural Network),发现各处资料都不是很全面,经过艰苦努力终于弄清
热门专题
7-2 彩虹瓶 (25 分)
采集wordpress整站图片
istream的头文件
layui表格合并表头
uniapp页面切换效果
百度地图坐标和地址转换
CheckBoxList 对齐
python比较数据库表数据导出数据是否一致
string字符串以'\0'结尾 吗
w3school 冒泡排序在哪里
虚拟机centos7挂载点分区方案
pgsql mybatis时间入参long
fiddler的模拟限速参考时间
wvRN 根据领居权重投票方法
geoseerver根据时间参数
Arcgis set null 中文
eclipse中设计bpmn
ios 状态栏显示白色
长图,选中后让选中的图片垂直居中 小程序
页面不填传的空字符还是null