Graph Cut and Its Application in Computer Vision 原文出处: http://lincccc.blogspot.tw/2011/04/graph-cut-and-its-application-in.html 现在好像需要代理才能访问了... 网络流算法最初用于解决流网络的优化问题,比如水管网络.通信传输和城市的车流等.Graph cut作为其中一类最常见的算法,用于求解流网络的最小割,即寻找一个总容量最小的边集合,去掉这个集合中的所有边将阻断这个网
计算机视觉中的边缘检测 边缘检测是计算机视觉中最重要的概念之一.这是一个很直观的概念,在一个图像上运行图像检测应该只输出边缘,与素描比较相似.我的目标不仅是清晰地解释边缘检测是怎样工作的,同时也提供一个新而又容易的方法只需要最小工作来明显地提高边缘检测. 通过获得这些边缘,许多计算机算法才得以有可能实现,因为在一个场景中边缘包含着绝大部分(至少很多)的信息. 举个例子,我们都记得 Windows XP 的那个绿色小山坡和蓝色天空的背景. 当我们的大脑试图去理解这个场景时,我们知道这是草地,看
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepages(随意排序,不分先后): 1.USC Computer Vision Group:南加大,多目标跟踪/检测等: 2.ETHZ Computer Vision Laboratory:苏黎世联邦理工学院,欧洲最好的几个CV/ML研究机构: 3.Helmut Grabner:Online Boost
Bag of Visual Word (BoW, BoF, 词袋) 简介 BoW 是传统的计算机视觉方法,用一些特征(一些向量)来表示一个图像.BoW的核心思想是利用一组较为通用的特征,将图像用这些特征来表示,不同图像对于同一个特征的响应也是不同的,最终一个图像可以转化成关于这一组特征的一个频率直方图(向量).这里有个挺清晰的介绍.BoW 常常用在 content-based image retrieval (CBIR) 任务上. 例如下面这张图(来源 Brown Computer Vision
Capel, David, and Andrew Zisserman. "Computer vision applied to super resolution." Signal Processing Magazine, IEEE 20, no. 3 (2003): 75-86. 简介 超分辨率重建的目的是使用一组低分辨率的图像来估计一副高分辨率图像.重建主要通过两个步骤来完成:配准低分辨率的图片组到一个公共的坐标系,然后使用图像的生成模型(generative image model