首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
ConnectedComponents算法
2024-10-17
flink 实现ConnectedComponents 连通分量,增量迭代算法(Delta Iteration)实现详解
1.连通分量是什么? 首先需要了解什么是连通图.无向连通图.极大连通子图等概念,这些概念都来自数据结构-图,这里简单介绍一下. 下图是连通图和非连通图,都是无向的,这里不扩展有向图: 连通分量(connected component):无向图中的极大连通子图(maximal connected subgraph)称为原图的连通分量. 极大连通子图: 1.连通图只有一个极大连通子图,就是它本身.(是唯一的) 2.非连通图有多个极大连通子图.(非连通图的极大连通子图叫做连通分量,每个分量都是一个连通
在ArangoDB中实现connectedcomponents算法
操作环境: tool:ArangoDB 3.3.13 操作系统:Debian 7.2.0-20 概念: Connected Components即连通体算法.用id标注图中每个连通体,将连通体中序号最小的顶点的id作为连通体的id. 如果在图G中,任意2个顶点之间都存在路径,那么称G为连通图,否则称该图为非连通图,则其中的极大连通子图称为连通体,如下图所示,该图中有两个连通体: 实例: 创建集合 //testv LET data = [{"_key":"6014c5cac34
Kosaraju算法解析: 求解图的强连通分量
Kosaraju算法解析: 求解图的强连通分量 欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 定义 连通分量:在无向图中,即为连通子图. 上图中,总共有四个连通分量.顶点A.B.C.D构成了一个连通分量,顶点E构成了一个连通分量,顶点F,G和H,I分别构成了两个连通分量. 强连通分量:有向图中,尽可能多的若干顶点组成的子图中,这些顶点都是相互可到达的,则这些顶点成为一个强连通分量. 上图中有三个强连通分量,分别是a.b.e以
OpenCV 学习笔记 04 深度估计与分割——GrabCut算法与分水岭算法
1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分支,它从同一物体的两张不同图像提取三维信息. 极几何的工作原理: 它跟踪从摄像头到图像上每个物体的虚线,然后再第二张图像做同样的操作,并根据同一物体对应的线的交叉来计算距离. 在使用 OpenCV 如何使用极几何来计算所谓的视差图,它是如图像中检测到不同深度的基本表示,这样就能够提取出一张图片的前景
OpenCV---分水岭算法
推文: OpenCV学习(7) 分水岭算法(1)(原理简介简单明了) OpenCV-Python教程:31.分水岭算法对图像进行分割(步骤讲解不错) 使用分水岭算法进行图像分割 (一)获取灰度图像,二值化图像,进行形态学操作,消除噪点 def watershed_demo(image): blur = cv.pyrMeanShiftFiltering(image,,) gray = cv.cvtColor(blur,cv.COLOR_BGR2GRAY) #获取灰度图像 ret,binary =
【算法导论-36】并查集(Disjoint Set)具体解释
WiKi Disjoint是"不相交"的意思.Disjoint Set高效地支持集合的合并(Union)和集合内元素的查找(Find)两种操作,所以Disjoint Set中文翻译为并查集. 就<算法导论>21章来讲,主要设计这几个知识点: 用并查集计算图的连通区域: 推断两个顶点是否属于同一个连通区域: 链表实现并查集: Rooted tree实现并查集: Rooted tree实现并查集时採用rank方法和路径压缩算法. <算法导论>21
Spark GraphX图算法应用【分区策略、PageRank、ConnectedComponents,TriangleCount】
一.分区策略 GraphX采用顶点分割的方式进行分布式图分区.GraphX不会沿着边划分图形,而是沿着顶点划分图形,这可以减少通信和存储的开销.从逻辑上讲,这对应于为机器分配边并允许顶点跨越多台机器.分配边的方法取决于分区策略PartitionStrategy并且对各种启发式方法进行了一些折中.用户可以使用Graph.partitionBy运算符重新划分图[可以使用不同分区策略].默认的分区策略是使用图形构造中提供的边的初始分区.但是,用户可以轻松切换到GraphX中包含的2D分区或其他启发式方
OpenCV-Python 图像分割与Watershed算法 | 三十四
目标 在本章中, 我们将学习使用分水岭算法实现基于标记的图像分割 我们将看到:cv.watershed() 理论 任何灰度图像都可以看作是一个地形表面,其中高强度表示山峰,低强度表示山谷.你开始用不同颜色的水(标签)填充每个孤立的山谷(局部最小值).随着水位的上升,根据附近的山峰(坡度),来自不同山谷的水明显会开始合并,颜色也不同.为了避免这种情况,你要在水融合的地方建造屏障.你继续填满水,建造障碍,直到所有的山峰都在水下.然后你创建的屏障将返回你的分割结果.这就是Watershed背后的"思想
B树——算法导论(25)
B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的,能够有效的降低磁盘的I/O操作数,因此我们经常看到有许多数据库系统使用B树或B树的变种来储存数据结构:从结构上看,B树的结点可以有很多孩子,从数个到数千个,这通常依赖于所使用的磁盘的单元特性. 如下图,给出了一棵简单的B树. 从图中我们可以发现,如果一个内部结点包含n个关键字,那么结点就有n+1个孩
分布式系列文章——Paxos算法原理与推导
Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资料后发现,学习Paxos最好的资料是论文<Paxos Made Simple>,其次是中.英文版维基百科对Paxos的介绍.本文试图带大家一步步揭开Paxos神秘的面纱. Paxos是什么 Paxos算法是基于消息传递且具有高度容错特性的一致性算法,是目前公认的解决分布式一致性问题最有效的算法之一
【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚
红黑树——算法导论(15)
1. 什么是红黑树 (1) 简介 上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极端情况是树变成了1条链)时,这些集合操作并不比在链表上执行的快. 于是我们需要构建出一种"平衡"的二叉搜索树. 红黑树(red-black tree)正是其中的一种.它可以保证在最坏的情况下,基本集合操作的时间复杂度是O(lgn). (2) 性质 与普通二叉搜索树不
散列表(hash table)——算法导论(13)
1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列表之前,我们先介绍直接寻址表. 当关键字的全域U(关键字的范围)比较小时,直接寻址是一种简单而有效的技术.我们假设某应用要用到一个动态集合,其中每个元素的关键字都是取自于全域U={0,1,…,m-1},其中m不是一个很大的数.另外,假设每个元素的关键字都不同. 为表示动态集合,我们用一个数组,或称为
虚拟dom与diff算法 分析
好文集合: 深入浅出React(四):虚拟DOM Diff算法解析 全面理解虚拟DOM,实现虚拟DOM
简单有效的kmp算法
以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说程序实现,思想很简单). 模式匹配的经典应用:从一个字符串中找到模式字串的位置.如“abcdef”中“cde”出现在原串第三个位置.从基础看起 朴素的模式匹配算法 A:abcdefg B:cde 首先B从A的第一位开始比较,B++==A++,如果全部成立,返回即可:如果不成立,跳出,从A的第二位开
神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里的循环神经网络,无奈理论太艰深,只能从头开始开始慢慢看,因此产生写一个项目的想法,把机器学习和深度学习里关于分类的算法整理一下,按照原理写一些demo,方便自己也方便其他人.项目地址:https://github.com/LiuRoy/classfication_demo,目前实现了逻辑回归和神经网
46张PPT讲述JVM体系结构、GC算法和调优
本PPT从JVM体系结构概述.GC算法.Hotspot内存管理.Hotspot垃圾回收器.调优和监控工具六大方面进行讲述.(内嵌iframe,建议使用电脑浏览) 好东西当然要分享,PPT已上传可供下载(点此下载),另外良心推荐阅读<深入理解Java虚拟机JVM高级特性与最佳实践.pdf>(点此下载).
【C#代码实战】群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法
若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样的任务,所以就好好把基础研究了一下,驱动式学习,目标明确,所以还是比较快去接受和理解,然后写代码实现就好了.今天就带领大家走近TSP问题以及群蚁算法. 机器学习目录:[目录]数据挖掘与机器学习相关算法文章总目录 本文原文地址:群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法 1.关于旅行商(
Android数据加密之SHA安全散列算法
前言: 对于SHA安全散列算法,以前没怎么使用过,仅仅是停留在听说过的阶段,今天在看图片缓存框架Glide源码时发现其缓存的Key采用的不是MD5加密算法,而是SHA-256加密算法,这才勾起了我的好奇心,所以趁着晚上没啥事,来学习一下. 其他几种加密方式: Android数据加密之Rsa加密 Android数据加密之Aes加密 Android数据加密之Des加密 Android数据加密之MD5加密 Android数据加密之Base64编码算法 Android数据加密之异或加密算法 SHA加密算
Android数据加密之Base64编码算法
前言: 前面学习总结了平时开发中遇见的各种数据加密方式,最终都会对加密后的二进制数据进行Base64编码,起到一种二次加密的效果,其实呢Base64从严格意义上来说的话不是一种加密算法,而是一种编码算法,为何要使用Base64编码呢?它解决了什么问题?这也是本文探讨的东西? 其他几种加密方式: Android数据加密之Rsa加密 Android数据加密之Aes加密 Android数据加密之Des加密 Android数据加密之MD5加密 Android数据加密之Base64编码算法 Android
热门专题
springmvc 查询结果包装
Three.js正交相机无法显示
sqlserver只取一条数据
ant design 关闭modal 后清除table的内容
js 判断空格和换行
model双向绑定 不显示
Wasserstein距离 概率论
用户路径分析具体流程
geotools 最短距离
geoserver中调用wmts和tms区别
Ubuntu minicom 默认端口
github action 图形设计
unity 技能系统
SQL 判断 是否是数字
oracle 建主键
查询sql server 占用内存
oracle下载19.15.1
如何使用Android 调试 真机
ansible windows 创建目录
maven配置文件增加一个maven库