首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
crc16多项式x15 x12 x5 1
2024-11-02
CRC-16/XMODE X16+X12+X5+1 C#、C和java环境下实现
private byte[] CRC(byte[] x, int len) //CRC校验函数 { ]; UInt16 crc = ; byte da; ; UInt16[] yu = { 0x0000,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7, 0x8108,0x9129,0xa14a,0xb16b,0xc18c,0xd1ad,0xe1ce,0xf1ef }; ) { da = ()) / ); crc <<= ; crc ^= yu[
FPGA CRC-16/XMODEM x16+x12+x5+1
module crc_16( input clk, input [47:0]mac, input rst, input hash_enable,//哈希控制器使能位 output reg hash_complete,//哈希转换完成标志位 output reg [15:0]crc_16 ); wire[63:0]stemp; reg[63:0]temp=0; reg temp_flag; parameter polynomial=17'b1_0001_0000_0010_0001; assign
【转】crc16几种标准校验算法及c语言代码
一.CRC16校验码的使用 现选择最常用的CRC-16校验,说明它的使用方法. 根据Modbus协议,常规485通讯的信息发送形式如下: 地址 功能码 数据信息 校验码 1byte 1byte nbyte 2byte CRC校验是前面几段数据内容的校验值,为一个16位数据,发送时,低8位在前,高8为最后. 例如:信息字段代码为: 1011001,校验字段为:1010. 发送方:发出的传输字段为: 1 0 1 1 0 0 1 1 0 10 信息字段 校验字段 接收方:使用相同的计算方法计算出信息字
用C#实现的几种常用数据校验方法整理(CRC校验;LRC校验;BCC校验;累加和校验)
CRC即循环冗余校验码(Cyclic Redundancy Check):是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定.循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性. /// CRC算法参数模型解释: /// NAME:参数模型名称. ///WIDTH:宽度,即CRC比特数. /// P
modbus-crc16——c语言
为确保消息数据的完整性,除了验证消息CRC之外,建议实现检查串行端口(UART)成帧错误的代码.如果接收消息中的CRC与接收设备计算的CRC不匹配,则应忽略该消息.下面的C语言代码片段显示了如何使用逐位移位和异或运算来计算Modbus消息CRC.使用消息帧中的每个字节计算CRC,除了包含CRC本身的最后两个字节. 参考:https://www.cnblogs.com/skullboyer/p/8342167.html 一.CRC16校验码的使用 现选择最常用的CRC-16校验,说明它的使用方法.
CRC全套~~~ 转载
经测试CRC16-CCITT是可以了,其它暂时没有测试哦. 00 0E 00 01 00 01 20 17 12 26 20 19 16 01 00 00 01 01 00 00 00 00 00 00 00 00 00 => 9D D8 uint8_t crc4_itu(uint8_t *data, uint_len length); uint8_t crc5_epc(uint8_t *data, uint_len length); uint8_t crc5_itu(uint8_t *data
[jnhs]全套CRC校验 算法
摘自 https://blog.csdn.net/cp1300/article/details/51443350 uint8_t crc4_itu(uint8_t *data, uint_len length); uint8_t crc5_epc(uint8_t *data, uint_len length); uint8_t crc5_itu(uint8_t *data, uint_len length); uint8_t crc5_usb(uint8_t *data, uint_len le
【高速接口-RapidIO】2、RapidIO串行物理层的包与控制符号
一.RapidIO串行物理层背景介绍 上篇博文提到RapidIO的物理层支持串行物理层与并行物理层两种,由于Xilinx 部分FPGA内部已经集成了串行高速收发器,所以用FPGA实现RapidIO大多都是基于串行物理层的.本文将主要讨论一下RapidIO串行物理层的包格式与控制符号. RapidIO串行物理层,通常称为串行RapidIO,简称为SRIO(Serial-RapidIO). 串行物理层定义器件间的全双工串行链路,在每个方向上使用单向差分信号.RapidIO串行物理层支持RapidIO
2.RapidIO串行物理层的包与控制符号
转自https://www.cnblogs.com/liujinggang/p/9932150.html 一.RapidIO串行物理层背景介绍 上篇博文提到RapidIO的物理层支持串行物理层与并行物理层两种,由于Xilinx 部分FPGA内部已经集成了串行高速收发器,所以用FPGA实现RapidIO大多都是基于串行物理层的.本文将主要讨论一下RapidIO串行物理层的包格式与控制符号. RapidIO串行物理层,通常称为串行RapidIO,简称为SRIO(Serial-RapidIO). 串行
最详细易懂的CRC-16校验原理(附源程序)(转)
最详细易懂的CRC-16校验原理(附源程序) from:http://www.openhw.org/chudonganjin/blog/12-08/230184_515e6.html 最详细易懂的CRC-16校验原理(附源程序) 1.循环校验码(CRC码): 是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定. 2.生成CRC码的基本原理: 任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应.例如:代码1010111对应的多项式
最详细易懂的CRC-16校验原理(附源程序)
from:http://www.openhw.org/chudonganjin/blog/12-08/230184_515e6.html 最详细易懂的CRC-16校验原理(附源程序) 1.循环校验码(CRC码): 是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定. 2.生成CRC码的基本原理: 任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应.例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x
CRC16 三种算法及c实现
标准CRC生成多项式如下表: 名称 生成多项式 简记式* 标准引用 CRC-4 x4+x+1 3 ITU G.704 CRC-8 x8+x5+x4+1 0
CRC16
http://www.stmcu.org/chudonganjin/blog/12-08/230184_515e6.html 1.循环校验码(CRC码): 是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定. 2.生成CRC码的基本原理: 任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应.例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111. 标准CRC生成多
CRC-16校验原理
最详细易懂的CRC-16校验原理(附源程序) 1.循环校验码(CRC码): 是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定. 2.生成CRC码的基本原理: 任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应.例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111. 标准CRC生成多项式如下表: 名称 生成多项式 简记
【算法集中营】CRC16 三种算法及c实现
标准CRC生成多项式如下表: 名称 生成多项式 简记式* 标准引用 CRC-4 x4+x+1 3 ITU G.704 CRC-8 x8+x5+x4+1 0x31 CRC-8 x8+x2+x1+1 0x07 CRC-8
CRC-16的原理和实现
CRC的全称为Cyclic Redundancy Check,中文名称为循环冗余校验.它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制.实际上,除 数据通信外,CRC在其它很多领域也是大有用武之地的.例如我们读软盘上的文件,以及解压一个ZIP文件时,偶尔会碰到“Bad CRC”错误,由此它在数据存储方面的应用可略见一斑. 差错控制理论是在代数理论基础上建立起来的.这里我们着眼于介绍CRC的算法与实现,对原理只能捎带说明一下.若需要进一步了解线性码.
如何使用Delphi编写Modbus RTU CRC16的校验码
在工业控制中,Modbus RTU CRC16的校验码用的比较广泛,包括本人富士产品中,PC与伺服电机以及PC与VP系列的变频器的Modbus RTU通讯中都使用到了CRC16. 而对CRC16的计算的方式基本上有2种:第一种,使用双循环依照CRC的计算方法进行计算,第二种,采用查表的方式.本人愚钝无比,从网络上搜来的查表法都与实际的正确CRC16的结果有所差异,因此编写了一个小程序供自己使用. 软件的界面很简单,输入诸如“010303020014”的值,然后每2个字符作为一个字节
C#CRC16 Modbus 效验算法
CRC校验(循环冗余校验)小知识 CRC即循环冗余校验码(Cyclic Redundancy Check):是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定.循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性. CRC算法参数模型解释: NAME:参数模型名称. WIDTH:宽度,即CRC比特数. POLY:生成项的简写,以16进制表示.例如:CRC-32即是
CRC16算法之二:CRC16-CCITT-XMODEM算法的java实现
CRC16算法系列文章: CRC16算法之一:CRC16-CCITT-FALSE算法的java实现 CRC16算法之二:CRC16-CCITT-XMODEM算法的java实现 CRC16算法之三:CRC16-CCITT-MODBUS算法的java实现 前言 CRC16算法有很多种,本篇文章会介绍其中的CRC16-CCITT-XMODEM算法 功能 实现CRC16-CCITT-XMODEM算法 支持int.short类型 支持选择数组区域计算 实现 package cc.eguid.crc16
CRC循环冗余校验码总结(转)
转自 http://blog.csdn.net/u012993936/article/details/45337069 一.CRC简介 先在此说明下什么是CRC:循环冗余码校验 英文名称为Cyclical Redundancy Check,简称CRC,它是利用除法及余数的原理来作错误侦测(Error Detecting)的.实际应用时,发送装置计算出CRC值并随数据一同发送给接收装置,接收装置对收到的数据重新计算CRC并与收到的CRC相比较, 若两个CRC值不同,则说明数据通讯出现错误 那么其实
热门专题
db2 身份证数据脱敏
Gitblit的插件
IDEA里python项目hive-site
DBserver连接达梦
nuxt.js i18n使用
python 词法分析模块
internet connection sharing注册表
vector dinic 网络流
spring事务异常打印日志
google插件wappalyzer
Vuex mutations可以用foreach吗
groupingBy 分组后排序
js获取的元素的高度没有小数
.net core 开发环境
docker管理平台
mac 前端开发软件
不用springmvc怎么向外发布restful的api
js获取当前节点的上个节点
NX二次开发获取NX主程序路径
js实现对dom元素的增添删除