BP算法在minist上的简单实现 数据:http://yann.lecun.com/exdb/mnist/ 参考:blog,blog2,blog3,tensorflow 推导:http://www.cnblogs.com/yueshangzuo/p/8025157.html 基本实现 import struct import random import numpy as np from math import sqrt class Data: def __init__(self): print
Minist数据集:MNIST_data 包含四个数据文件 一.方法一:经典方法 tf.matmul(X,w)+b import tensorflow as tf import numpy as np import input_data import time #define paramaters learning_rate=0.01 batch_size=128 n_epochs=900 # 1.read from data file #using TF learn built in func
batch normalization in tensorflow requires this extra dependency 为什么加上这两句? extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(extra_update_ops): train_step = optimizer.minimize(mean_loss)