cs231n线性分类器学习笔记,非完全翻译,根据自己的学习情况总结出的内容: 线性分类 本节介绍线性分类器,该方法可以自然延伸到神经网络和卷积神经网络中,这类方法主要有两部分组成,一个是评分函数(score function):是原始数据和类别分值的映射,另一个是损失函数:它是用来衡量预测标签和真是标签的一致性程度.我们将这类问题转化为优化问题,通过修改参数来最小化损失函数. 首先定义一个评分函数,这个函数将输入样本映射为各个分类类别的得分,得分的高低代表该样本属于该类别可能性的高低.现在假设有