GPU架构 SM(Streaming Multiprocessors)是GPU架构中非常重要的部分,GPU硬件的并行性就是由SM决定的. 以Fermi架构为例,其包含以下主要组成部分: CUDA cores Shared Memory/L1Cache Register File Load/Store Units Special Function Units Warp Scheduler GPU中每个SM都设计成支持数以百计的线程并行执行,并且每个GPU都包含了很多的SM,所以GPU支持成百上千的
报错 1.[invalid argument 0: Sizes of tensors must match except in dimension 0.] {出现在 torch.utils.data.DataLoader 输出的 batch data 读取处} {DataLoader里面数据读取有误,准确来说,是image类型数据读取,要注意通道数和尺寸的统一性} {将输入的图片transform为统一尺寸和通道} 2.[THCudaCheck FAIL file=/pytorch/aten/