求集合里元素的个数 输出最大的个数是多少 Sample Input41 23 45 61 641 23 45 67 8 Sample Output42 # include <iostream> # include <cstdio> # include <cstring> # include <algorithm> # include <cmath> # include <queue> # define LL long long usi
//计算并输出给定10个数的方差. #include<math.h> #include<stdio.h> ]) { double p = 0.0,f=0.0,g=0.0; ; i < ; i++) { p += x[i]; } p = p / ; printf("%f\n", p); ; j < ; j++) { g = x[j] - p; f += g*g; printf("%f\n", f); } f = f / ; f =
1.输出XGBoost特征的重要性 from matplotlib import pyplot pyplot.bar(range(len(model_XGB.feature_importances_)), model_XGB.feature_importances_) pyplot.show() XGBoost 特征重要性绘图 也可以使用XGBoost内置的特征重要性绘图函数 # plot feature importance using built-in function from xgboo
本文翻译自A guide to receptive field arithmetic for Convolutional Neural Networks(可能需要FQ才能访问),方便自己学习和参考.若有侵权,还请告知. 感受野(receptive field)可能是卷积神经网络(Convolutional Neural Network,CNNs)中最重要的概念之一,值得我们关注和学习.当前流行的物体识别方法的架构大都围绕感受野的设计.但是,当前并没有关于CNN感受野计算和可视化的完整指南.本教程
训练好的模型,想要输入中间层的特征图,有两种方式: 1. 通过model.get_layer的方式.创建新的模型,输出为你要的层的名字. 创建模型,debug状态可以看到模型中,base_model/layers,图中红框即为layer名字,根据你想输出的层填写.最后网络feed数据后,输出的就是中间层结果. 2. 通过建立Keras的函数. from keras import backend as K from keras.models import load_model from matpl