首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
cv2 做8x8dct
2024-10-30
在python3下对数据分块(8x8大小)使用OpenCV的离散余弦变换DCT
在MATLAB中有blkproc (blockproc)对数据处理, 在python下没找到对应的Function, 这里利用numpy 的split(hsplit和vsplit) 对数据分块处理成8x8的小块, 然后在利用OpenCV的dct函数做变换, 同时利用idct 验证数据变换是否正确. import numpy as np import cv2 a = np.arange(256).reshape((16,16)) print("ori data: \n{}".format
机器学习进阶-图像金字塔与轮廓检测-图像金字塔-(**高斯金字塔) 1.cv2.pyrDown(对图片做向下采样) 2.cv2.pyrUp(对图片做向上采样)
1.cv2.pyrDown(src) 对图片做向下采样操作,通常也可以做模糊化处理 参数说明:src表示输入的图片 2.cv2.pyrUp(src) 对图片做向上采样操作 参数说明:src表示输入的图片 高斯金字塔:分为两种情况:一种是向下采样,一种是向上采样 下采样的原理:先与Gi进行高斯卷积即高斯滤波,再将所有偶数行和列去除,实现行和列维度缩减的目的 代码: 第一步:读入图片 第二步:使用cv2.pyrDown进行高斯金字塔的下采样 第三步:使用自己的步骤做高斯金字塔的下采样,先对图像作高
[转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR
Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Michael Nielsen 先生的 Deep Learning 教程. 用了他的代码在theano下测试了下中文车牌字符的识别.由于我没有GPU,简单的在进行了16个epoch之后,识别率达到了 98.41% ,由于图像本来质量就不高,达到这个识别率,效果挺不错了. 一共 31 类 车牌中文字符数据来源于
从PyOpenCV到CV2
安装cv2 http://hyry.dip.jp/files/opencv.zip 采用cv2重写的<Python科学计算>中的实例程序 读者可以在下面的页面中搜索“opencv”,并根据Python版本下载对应的安装程序. http://www.lfd.uci.edu/~gohlke/pythonlibs/ 非官方的Windows系统Python扩展库 安装完毕之后,运行下面的程序,测试是否安装正确. import cv2import sys try: filename = sys.a
Opencv基础课必须掌握:滑动条做调色盘 -OpenCV步步精深
滑动条做调色盘 我们来想一下这个程序需要什么,首先需要一个窗口显示一切=.=(︿( ̄︶ ̄)︿废话一样): 说到调色盘除了画板也就是窗口(默认为黑色),调色就要涉及三种颜色 红色Red(我们用R表示),绿色Green(我们用G表示),蓝色Blue(我们用B表示) 我们要用三个滑动条来设置这三种颜色,涉及到一个函数 cv2.getTrackbarPos() 这个函数有五个参数,由于今天我们很基础,所以只介绍两个参数:第一个参数是滑动条的名字,第二个参数 是滑动条被放置窗口的名字. 由于opencv没
[树莓派(raspberry pi)] 02、PI3安装openCV开发环境做图像识别(详细版)
前言 上一篇我们讲了在linux环境下给树莓派安装系统及入门各种资料 ,今天我们更进一步,尝试在PI3上安装openCV开发环境. 博主在做的过程中主要参考一个国外小哥的文章(见最后链接1),不过其教程中有一个地方稍微有点问题,导致我入坑好久!这里也会着重说明下. 1.Expand filesystem 新安装系统之后,首要的工作就是扩大文件系统.因为,用SD卡安装完系统后一大部分空间实际是未被分配的: sudo raspi-config 选择7高级,然后选择“1. Expand File Sy
模块cv2的用法
一.读入图像 使用函数cv2.imread(filepath,flags)读入一副图片 filepath:要读入图片的完整路径 flags:读入图片的标志 cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道 cv2.IMREAD_GRAYSCALE:读入灰度图片 cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道 import cv2 img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE) 二
深度学习实践-强化学习-bird游戏 1.np.stack(表示进行拼接操作) 2.cv2.resize(进行图像的压缩操作) 3.cv2.cvtColor(进行图片颜色的转换) 4.cv2.threshold(进行图片的二值化操作) 5.random.sample(样本的随机抽取)
1. np.stack((x_t, x_t, x_t, x_t), axis=2) 将图片进行串接的操作,使得图片的维度为[80, 80, 4] 参数说明: (x_t, x_t, x_t, x_t) 表示需要进行串接的图片, axis = 2 表示在第三个维度上进行串接操作 2. cv2.resize(x, [80, 80]) # 将图片的维度变化为80 * 80的维度 参数说明, x为输入的图片,80, 80表示图片变化的维度 3.cv2.cvtColor(x_t, tf.COLOR_RG
深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob
OpenCV中cv2的用法
一.读入图像 使用函数cv2.imread(filepath,flags)读入一副图片 filepath:要读入图片的完整路径 flags:读入图片的标志 cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道 cv2.IMREAD_GRAYSCALE:读入灰度图片 cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道 import cv2 img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE) 二
机器学习进阶-目标跟踪-KCF目标跟踪方法 1.cv2.multiTracker_create(构造选框集合) 2. cv2.TrackerKCF_create(获得KCF追踪器) 3. cv2.resize(变化图像大小) 4.cv2.selectROI(在图像上框出选框)
1. tracker = cv2.multiTracker_create() 获得追踪的初始化结果 2.cv2.TrackerKCF_create() 获得KCF追踪器 3.cv2.resize(frame, (w, h), cv2.INTER_AEAR) # 进行图像大小的重新变化参数说明:frame表示输入图片,(w, h) 表示变化后的长和宽, cv2.INTER_AEAR表示插值的方法 4.cv2.selectROI(‘Frame’, frame, fromCenter=False,s
机器学习进阶-光流估计 1.cv2.goodFeaturesToTrack(找出光流估计所需要的角点) 2.cv2.calcOpticalFlowPyrLK(获得光流检测后的角点位置) 3.cv2.add(进行像素点的加和)
1.cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params) 用于获得光流估计所需要的角点参数说明:old_gray表示输入图片,mask表示掩模,feature_params:maxCorners=100角点的最大个数,qualityLevel=0.3角点品质,minDistance=7即在这个范围内只存在一个品质最好的角点2. pl, st, err = cv2.calcOpticalFlowPyrLK(old_gray,
机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, transform_axes表示变换后四个角的位置 2.cv2.warpPerspective(gray, H, (width, height)) 根据H获得变化后的图像 参数说明: gray表示输入的灰度图像, H表示变化矩阵,(width, height)表示变换后的图像大小3. cv2.approx
机器学习进阶-图像特征sift-SIFT特征点 1.cv2.xfeatures2d.SIFT_create(实例化sift) 2. sift.detect(找出关键点) 3.cv2.drawKeypoints(画出关键点) 4.sift.compute(根据关键点计算sift向量)
1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None) 找出图像中的关键点 参数说明: kp表示生成的关键点,gray表示输入的灰度图, 3. ret = cv2.drawKeypoints(gray, kp, img) 在图中画出关键点 参数说明:gray表示输入图片, kp表示关键点,img表示输出的图片 4.kp, dst = sift.compute
机器学习进阶-图像特征harris-角点检测 1.cv2.cornerHarris(进行角点检测)
1.cv2.cornerHarris(gray, 2, 3, 0.04) # 找出图像中的角点 参数说明:gray表示输入的灰度图,2表示进行角点移动的卷积框,3表示后续进行梯度计算的sobel算子的大小,0.04表示角点响应R值的α值 角点检测:主要是检测一些边角突出来的点,对于A和B这样的面上的点而言,一个卷积框在上面移动,框中的基本像素点不发生变化, 对于像C和D边界点,只有x或者y轴方向上的平移,像素框内的像素会发生偏移,而对于E和F这样的角点而言,不管是像x轴或者向y轴平移,像素框内
机器学习进阶-项目实战-信用卡数字识别 1.cv2.findContour(找出轮廓) 2.cv2.boudingRect(轮廓外接矩阵位置) 3.cv2.threshold(图片二值化操作) 4.cv2.MORPH_TOPHAT(礼帽运算突出线条) 5.cv2.MORPH_CLOSE(闭运算图片内部膨胀) 6. cv2.resize(改变图像大小) 7.cv2.putText(在图片上放上文本)
7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的文本str格式,loc表示文本在图中的位置,font_size可以使用cv2.FONT_HERSHEY_SIMPLEX, font_scale表示文本的规格,color表示文本颜色,linestick表示线条大小 信用卡数字识别: 信用卡 数字模板涉及到的内容:主要是采用模板匹配的思想 思
机器学习进阶-直方图与傅里叶变化-直方图均衡化 1.cv2.equalizeHist(进行直方图均衡化) 2. cv2.createCLAHA(用于生成自适应均衡化图像)
1. cv2.equalizeHist(img) # 表示进行直方图均衡化 参数说明:img表示输入的图片 2.cv2.createCLAHA(clipLimit=8.0, titleGridSize=(8, 8)) 用于生成自适应均衡化图像 参数说明:clipLimit颜色对比度的阈值, titleGridSize进行像素均衡化的网格大小,即在多少网格下进行直方图的均衡化操作 直方图均衡化:一般可以用来提升图片的亮度, 在上面一节中,我们可以看出在150-200之间所占的频数特别的大,频数
机器学习进阶-直方图与傅里叶变换-图像直方图 1.cv2.calc(生成图像的像素频数分布(直方图))
1. cv2.calc([img], [0], mask, [256], [0, 256]) # 用于生成图像的频数直方图 参数说明: [img]表示输入的图片, [0]表示第几个通道, mask表示掩码,通常生成一部分白色,一部分黑色的掩码图, [256]表示直方图的个数, [0, 256]表示数字的范围 图像直方图表示的是颜色的像素值,在单个或者一个范围内出现的频数,一般图像会在某一个颜色区间内呈现较高的值 一只小猫,即其(0-255)的像素点的直方图分布情况,我们可以看出其在100-20
机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMaxLoc(找出矩阵最大值和最小值的位置(x,y)) 3.cv2.rectangle(在图像上画矩形)
1. cv2.matchTemplate(src, template, method) # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配度指标 2. min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(ret) # 找出矩阵中最大值和最小值,即其对应的(x, y)的位置参数说明:min_val, max_val, min_loc, max_loc 分别表示最小值,最大值,即对应的位
机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..
1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 2. cv2.findContours(img,mode, method) # 找出图中的轮廓值,得到的轮廓值都是嵌套格式的 参数说明:img表示输入的图片,mode表示轮廓检索模式,通常都使用RETR_TREE找出所有的轮廓值,method表示轮廓逼近方法,使用NONE表示所有轮廓都显示 3.
机器学习进阶-边缘检测-Canny边缘检测 1.cv2.Canny(进行Canny边缘检测)
1. cv2.Canny(src, thresh1, thresh2) 进行canny边缘检测 参数说明: src表示输入的图片, thresh1表示最小阈值,thresh2表示最大阈值,用于进一步删选边缘信息 Canny边缘检测步骤: 第一步:使用高斯滤波器进行滤波,去除噪音点 第二步:使用sobel算子,计算出每个点的梯度大小和梯度方向 第三步:使用非极大值抑制(只有最大的保留),消除边缘检测带来的杂散效应 第四步:应用双阈值,来确定真实和潜在的边缘 第五步:通过抑制弱边缘来完成最终的边缘检
热门专题
springboot nacos 热部署失败
pythonselenium打开一个新窗口
selenium ec模块
生成 svg path
spring项目启动初始化字典表
powerbi数据分析师面试
VS2019 wpf快速打包
使用servlet实现用户注册功能
fiddler过滤地址
python矩阵mat
单进程编程和多进程编程最大的区别是什么
javascript创建键值对
list<entity>根据某一参数进行排序
numpy 使用 mkl
jeecg 字典text显示俩字段
win7系统虚拟机装VMware Tools报错
vscode上传配置
DataGridView中某列为数字格式,前面的0却不显示
idea rest client 脚本
嵌入式linux查看内存大小