首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
cv2.findContours才几个点
2024-11-09
Python开发:OpenCV版本差异所引发的cv2.findContours()函数传参问题
一.问题如下: cv2.findContours()这个方法是用来找出轮廓值的: # cv2.findContours找出轮廓值,cv2.RETR_EXTERNAL表示图像的外轮廓 binary, contours, h = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 但是在运行时,我所使用的opencv-python4.1.0.25则报错: 错误信息: ValueError: not enough v
机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..
1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 2. cv2.findContours(img,mode, method) # 找出图中的轮廓值,得到的轮廓值都是嵌套格式的 参数说明:img表示输入的图片,mode表示轮廓检索模式,通常都使用RETR_TREE找出所有的轮廓值,method表示轮廓逼近方法,使用NONE表示所有轮廓都显示 3.
python调用cv2.findContours时报错:ValueError: not enough values to unpack (expected 3, got 2)
OpenCV旧版,返回三个参数: im2, contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) 要想返回三个参数: 把OpenCV 降级成3.4.3.18 就可以了,在终端输入pip install opencv-python==3.4.3.18 OpenCV 新版调用,返回两个参数: contours, hierarchy = cv2.findContours(mask, cv
cv2.findContours
Layout of the output array image is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels) 解决办法: 1. copy of original array image=image.copy() 2.数组可能不连续,那就使他连续: image = np.ascontiguousarray(image, dtype=np.uint8)
机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, transform_axes表示变换后四个角的位置 2.cv2.warpPerspective(gray, H, (width, height)) 根据H获得变化后的图像 参数说明: gray表示输入的灰度图像, H表示变化矩阵,(width, height)表示变换后的图像大小3. cv2.approx
python cv2截取不规则区域图片
知识掌握 cv2.threshold()函数: 设置固定级别的阈值应用于多通道矩阵,将灰度图像变换二值图像,或去除指定级别的噪声,或过滤掉过小或者过大的像素点. Python: cv2.threshold(src, thresh, maxval, type[, dst]) → retval, dst 在其中: src:表示的是图片源 thresh:表示的是阈值(起始值) maxval:表示的是最大值 type:表示的是这里划分的时候使用的是什么类型的算法,常用值为0(cv2.THRESH_BIN
查找轮廓(cv2.findCountours函数)
1.输入为二值图像,黑色为背景,白色为目标 2.该函数会修改原图像,因此若想保留原图像在,则需拷贝一份,在拷贝图里修改. 一.查找轮廓 cv2.findContours() 三个输入参数:输入图像(二值图像),轮廓检索方式,轮廓近似方法 1.轮廓检索方式 cv2.RETR_EXTERNAL 只检测外轮廓 cv2.RETR_LIST 检测的轮廓不建立等级关系 cv2.RETR_CCOMP 建立两个等级的轮廓,上面一层为外边界,里面一层为内孔的边界信息 cv2.RETR_TREE 建立一个等级树结构
机器学习进阶-背景建模-(帧差法与混合高斯模型) 1.cv2.VideoCapture(进行视频读取) 2.cv2.getStructureElement(构造形态学的卷积) 3.cv2.createBackgroundSubtractorMOG2(构造高斯混合模型) 4.cv2.morpholyEx(对图像进行形态学的变化)
1. cv2.VideoCapture('test.avi') 进行视频读取 参数说明:‘test.avi’ 输入视频的地址2. cv2.getStructureElement(cv2.MORPH_ELLIPSE, (3, 3)) # 构造一个全是1的kernel用于形态学的操作 参数说明:cv2.MORPH_ELLIPSE 生成全是1的kernel,(3, 3)表示size 3.cv2.createBackgroundSubtractorMOG2().apply(image) 对图像进行混合
机器学习进阶-项目实战-信用卡数字识别 1.cv2.findContour(找出轮廓) 2.cv2.boudingRect(轮廓外接矩阵位置) 3.cv2.threshold(图片二值化操作) 4.cv2.MORPH_TOPHAT(礼帽运算突出线条) 5.cv2.MORPH_CLOSE(闭运算图片内部膨胀) 6. cv2.resize(改变图像大小) 7.cv2.putText(在图片上放上文本)
7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的文本str格式,loc表示文本在图中的位置,font_size可以使用cv2.FONT_HERSHEY_SIMPLEX, font_scale表示文本的规格,color表示文本颜色,linestick表示线条大小 信用卡数字识别: 信用卡 数字模板涉及到的内容:主要是采用模板匹配的思想 思
OpenCV 学习笔记03 findContours函数
opencv-python 4.0.1 1 函数释义 词义:发现轮廓! 从二进制图像中查找轮廓(Finds contours in a binary image):轮廓是形状分析和物体检测和识别的有用工具. findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> contours, hierarchy 参数 image - 一个8位单通道二值图像(非0即1).非零像素视为1.零像素依然为0, 因此图像被视
opencv使用 findContours
http://www.jb51.net/article/132217.htm https://www.jianshu.com/p/4bc3349b4611 https://blog.csdn.net/sunny2038/article/details/12889059使用这个代码就可以直接使用 https://blog.csdn.net/sunny2038/article/details/12889059 https://docs.opencv.org/2.4/modules/imgproc/d
OpenCV—Python 轮廓检测 绘出矩形框(findContours\ boundingRect\rectangle
千万注意opencv的轮廓检测和边缘检测是两码事 本文链接:https://blog.csdn.net/wsp_1138886114/article/details/82945328 1 获取轮廓 OpenCV2获取轮廓主要是用 cv2.findContours() import cv2 img = cv2.imread('wujiaoxing.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret,binary = cv2.threshol
OpenCV之Python学习笔记
OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书<OpenCV Computer Vision with Python>,于是就看一遍,顺便把自己掌握的东西整合一下,写成学习笔记了.更需要的朋友参考. 阅读须知: 本文不是纯粹的译文,只是比较贴近原文的笔记: 请设法购买到出版社出版的书,支持正版. 从书名就能看出来本书是介绍在Pytho
python3 树莓派 + usb摄像头 做颜色识别 二维码识别
今天又啥也没干 我完蛋了哦 就是没办法沉下心来,咋办....还是先来条NLP吧.. 七,凡事必有至少三个解决方法 对事情只有一个方法的人,必陷入困境,因为别无选择. 对事情有两个方法的人也陷入困境,因为他制造了左右两难,进退维谷的局面给自己. 有第三个方法的人,通常会找到第四,五个方法,甚至更多的方法. 有选择就是有能力,所以,有选择总比没有选择好. 至今不成功,只是说至今用过的方法都得不到想要的效果. 没有办法,只是说已知的办法都行不通. 世界上尚有很多我们过去没有想过,或者尚未认识的方法.
基于 TensorFlow 在手机端实现文档检测
作者:冯牮 前言 本文不是神经网络或机器学习的入门教学,而是通过一个真实的产品案例,展示了在手机客户端上运行一个神经网络的关键技术点 在卷积神经网络适用的领域里,已经出现了一些很经典的图像分类网络,比如 VGG16/VGG19,Inception v1-v4 Net,ResNet 等,这些分类网络通常又都可以作为其他算法中的基础网络结构,尤其是 VGG 网络,被很多其他的算法借鉴,本文也会使用 VGG16 的基础网络结构,但是不会对 VGG 网络做详细的入门教学 虽然本文不是神经网络技术的入门教
使用opencv进行简单的手势检测[by Python]
代码参考于:https://github.com/rainyear/lolita/issues/8 简单的手势识别,基本思路是基于皮肤检测,皮肤的颜色在HSV颜色空间下与周围环境的区分度更高,从RGB转换到HSV颜色空间下针对皮肤颜色进行二值化,得到mask: def HSVBin(img): hsv = cv2.cvtColor(img,cv2.COLOR_RGB2HSV) lower_skin = np.array([100,50,0]) upper_skin = np.array([125
第八节、图片分割之GrabCut算法、分水岭算法
所谓图像分割指的是根据灰度.颜色.纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性.我们先对目前主要的图像分割方法做个概述,后面再对个别方法做详细的了解和学习. 一.图像分割算法概述 1.基于阈值的分割方法 阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值相比较,最后将像素根据比较结果分到合适的类别中.因此,该类方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值. 2.基于边
[Object Tracking] Contour Detection through Tensorflow running on smartphone
From: 手机端运行卷积神经网络的一次实践 -- 基于 TensorFlow 和 OpenCV 实现文档检测功能 貌似不错的东西:移动端视觉识别模型:MobileNets Holistically-nested Edge Detection 是屠卓文教授课题组在ICCV 2015 的工作. 该工作最大的亮点在于,一改之前边缘检测方法基于局部策略的方式,而是采用全局的图像到图像的处理方式. 即:不再针对一个个patch进行操作,而是对整幅图像进行操作,为高层级信息的获取提供了便利. 题材看上去很
转载:使用 OpenCV 识别 QRCode
原文链接:http://coolshell.cn/articles/10590.html#jtss-tsina 识别二维码的项目数不胜数,每次都是开箱即用,方便得很. 这次想用 OpenCV 从零识别二维码,主要是温习一下图像处理方面的基础概念,熟悉 OpenCV 的常见操作,以及了解二维码识别和编码的基本原理. 作者本人在图像处理方面还是一名新手,采用的方法大多原始粗暴,如果有更好的解决方案欢迎指教. QRCode 二维码有很多种,这里我选择的是比较常见的 QRCode 作为探索对象.QRCo
边缘检测︱基于 HED网络TensorFlow 和 OpenCV 实现图片边缘检测
本文摘录自<手机端运行卷积神经网络的一次实践 – 基于 TensorFlow 和 OpenCV 实现文档检测功能> 只截取感兴趣 的片段. . 一.边缘检测 1.传统边缘检测 Google 搜索 opencv scan document,是可以找到好几篇相关的教程的,这些教程里面的技术手段,也都大同小异,关键步骤就是调用 OpenCV 里面的两个函数,cv2.Canny() 和 cv2.findContours(). 看上去很容易就能实现出来,但是真实情况是,这些教程,仅仅是个 demo 演示
热门专题
window10 localhost不等于127.0.01
linux运维工程师项目经验
android studio查看cpu占用率
提现失败,您使用的私钥格式错误,请检查RSA私钥配置
支持向量回归 gamma
svn文件夹灰色横杠
定时器和sleep的区别
Geometry类型十六进制解析
navicat premium 15.0.17密钥
oracle查看数据库
windows bat 后台启动
string转int DB2 -420 sql
delphi cxgrid 合并相同行
QT QString中有exists
为什么idea建空项目不能新建类
怎么使用gatttool保持长时间连接
GeoWebCache切片后本地找不到
laravel tinker 代码中执行
jmeter怎么生成折线图
如何查看yum安装的包