2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is less than 0.5 × 10$^{−p}$ .-P29Bisection Method的优点是计算次数(step)是确定的(interval<精度).后面介绍的算法的interval是不确定的, 所以什么时候结束计算呢?不知道.所以定义“stopping criteria’’来决定什么时候结束
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is less than 0.5 × 10$^{−p}$ .-P29Bisection Method的优点是计算次数(step)是确定的(interval<精度).后面介绍的算法的interval是不确定的, 所以什么时候结束计算呢?不知道.所以定义“stopping criteria’’来决定什么时候结束
摘录的一篇有关求解非线性最小二乘问题的算法--LM算法的文章,当中也加入了一些我个人在求解高精度最小二乘问题时候的一些感触: LM算法,全称为Levenberg-Marquard算法,它可用于解决非线性最小二乘问题,多用于曲线拟合等场合. LM算法的实现并不算难,它的关键是用模型函数 f 对待估参数向量p在其邻域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快等优点.LM算法属于一种"信赖域法"--所谓的信赖域法,此处稍微解释一下:在最优化算法中,都是