首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
d维空间VC维d 1
2024-11-10
《机器学习基石》---VC维
1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个样本打散:假设空间的VC维就是它能打散的最大样本数目N.若对任意N,总存在一组样本使得假设空间能将它们打散,则函数集的VC维是无穷大: 几种假设空间的VC维如下: 2 推导d维感知机的VC维 这里将证明,d维感知机的vc维是d+1. 第一步,证明 dvc >= d + 1. 要证明 dvc >=
6 VC维
1 VC维的定义 VC维其实就是第一个break point的之前的样本容量.标准定义是:对一个假设空间,如果存在N个样本能够被假设空间中的h按所有可能的2的N次方种形式分开,则称该假设空间能够把N个样本打散:假设空间的VC维就是它能打散的最大样本数目N.若对任意数目的样本都有函数能将它们打散,则函数集的VC维是无穷大: 几种假设空间的VC维如下: 2 感知机的VC维 d维感知机的vc维是d+1.(证明略) 3 VC维的物理意义 VC维表示的是做二分类时假设空间的自由度,是把数据集打散的能力.
【转载】VC维的来龙去脉
本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC维在机器学习领域是一个很基础的概念,它给诸多机器学习方法的可学习性提供了坚实的理论基础,但有时候,特别是对我们工程师而言
VC维的来龙去脉——转载
VC维的来龙去脉——转载自“火光摇曳” 在研究VC维的过程中,发现一篇写的很不错的VC维的来龙去脉的文章,以此转载进行学习. 原文链接,有兴趣的可以参考原文进行研究学习 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC
【转载】VC维,结构风险最小化
以下文章转载自http://blog.sina.com.cn/s/blog_7103b28a0102w9tr.html 如有侵权,请留言,立即删除. 1 VC维的描述和理解 给定一个集合S={x1,x2,...xd},如果一个假设类H(hypothesis h ∈ H)能够实现集合S中所有元素的任意一种标记方式,则称H能够打散S.有了打散的定义,就得到VC维的定义:H的VC维表示能够被H打散的最大集合的大小.若H能分散任意大小的集合,那么VC(H)为无穷大. VC维反应的是hypothesis
Computer Science Theory for the Information Age-5: 学习理论——VC维的定义以及一些例子
学习理论——VC维的定义以及一些例子 本文主要介绍一些学习理论上的东西.首先,我们得明确,从训练集上学习出来的分类器的最终目标是用于预测未知的样本,那么我们在训练的时候该用多少的样本才能使产生的分类器的效果尽可能的好呢?这些就是VC-理论要解决的问题.在介绍这个理论之前,我们得先介绍一个比较抽象的概念——VC维.这个指标是用与衡量假设空间的复杂程度.为了能更好的理解VC维,本文还会举一些例子来加深理解. (一)由一个例子引出的动机 为了更好的说明为什么我们要定义这个VC维,我们先来看一个例子.假
VC维的来龙去脉(转)
本文转自VC维的来龙去脉 本文为直接复制原文内容,建议阅读原文,原文排版更清晰,且原网站有很多有意思的文章. 阅读总结: 文章几乎为台大林老师网课“机器学习可行性”部分串联总结,是一个很好的总结. Hoeffding不等式 -> 学习可行的两个核心条件 -> 有效假设 -> 成长函数 -> VC维 以下为原文: 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypothese
VC维与DNN的Boundary
原文链接:解读机器学习基础概念:VC维来去 作者:vincentyao 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number of Hypotheses Growth Function Break Point与Shatter VC Bound VC dimension 深度学习与VC维 小结 参考文献 VC维在机器学习领域是一个很基础的概念,它给诸多机器学习方法的可学习性提供了坚实的理论基础,但有时候,
VC维相关知识
假设空间H(Hypothesis Set) 输入空间D(X1...Xn) 1.增长函数(grown function) 是关于输入空间尺寸n的函数 假设空间对于D中所有实例实现分类(赋予标记)的分类方式的最大种数(有多少种分类方式) 最大值为2^n,但是很多增长函数都达不到最大值. 2.对分(dichotomies) H对D的一种分类方式就是一种对分 3.打散(shatter) H能实现D上全部n个实例的全部对分,就是打散,不能实现就是不打散. 4.Break Point 当n增大到一个值m时,
VC维含义
VC维含义的个人理解 有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念.在读<神经网络原理>的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料,又参考了一些网络上的资料(主要是这篇,不过个人感觉仍然没有抓住重点),重新思考了一下,终于理解了这个定义所要传达的思想. 先要介绍分散(shatter)的概念:对于一个给定集合S={x1, ... ,xd},如果一个假设类H能够实现集合S中所有元素的任意一种标记方式,则称H能够分散S. 这样之后才有VC维的定
svm、经验风险最小化、vc维
原文:http://blog.csdn.net/keith0812/article/details/8901113 “支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上” 结构化风险 结构化风险 = 经验风险 + 置信风险 经验风险 = 分类器在给定样本上的误差 置信风险 = 分类器在未知文本上分类的结果的误差 置信风险因素: 样本数量,给定的样本数量越大,学习结果越有可能正确,此时置信风险越小: 分类函数的VC维,显然VC维越大,推广能力越差,置信风险会变大. 提高样本
VC维
vc理论(Vapnik–Chervonenkis theory )是由 Vladimir Vapnik 和 Alexey Chervonenkis发明的.该理论试图从统计学的角度解释学习的过程.而VC维是VC理论中一个很重要的部分. 定义:对一个指示函数集,如果存在h个样本能够被函数集中的函数按所有可能的 种形式分开,则称函数集能够把h个样本打散;函数集的VC维就是它能打散的最大样本数目h.若对任意数目的样本都有函数能将它们打散,则函数集的VC维是无穷大. VC维反映了函数集的学习能力,VC维越
VC维含义的个人理解
有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念.在读<神经网络原理>的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料,又参考了一些网络上的资料(主要是这篇,不过个人感觉仍然没有抓住重点),重新思考了一下,终于理解了这个定义所要传达的思想. 先要介绍分散(shatter)的概念:对于一个给定集合S={x1, ... ,xd},如果一个假设类H能够实现集合S中所有元素的任意一种标记方式,则称H能够分散S. 这样之后才有VC维的定义:H的VC维表示为V
什么叫做VC维
参考<机器学习导论> 假设我们有一个数据集,包含N个点.这N个点可以用2N种方法标记为正例和负例.因此,N个数据点可以定义2N种不同的学习问题.如果对于这些问题中的任何一个,我们都能够找到一个假设h属于H,将正例和负例分开,那么我们就称H散列N个点.也就是说,可以用N个点定义的任何学习问题都能够用一个从H中抽取的假设无误差地学习.可以被H散列的点的最大数量称为H的VC维,记为VC(H),它度量假设类H的学习能力. 通常我更喜欢用自由度来近似表达假设类的学习能力. 通常,在实际生活中,世界是平滑
vc维的解释
在做svm的时候我们碰到了结构风险最小化的问题,结构风险等于经验风险+vc置信范围,当中的vc置信范围又跟样本的数量和模型的vc维有关,所以我们看一下什么是vc维 首先看一下vc维的定义:对一个指标函数集,假设存在H个样本可以被函数集中的函数按全部可能的2的H次方种形式分开,则称函数集可以把H个样本打散:函数集的VC维就是它能打散的最大样本数目H 比如有个样本,一个函数可以将这h个样本打散,打散指的是样本最后被分类的情况有2^h种可能.则这个函数可以打散的最大样本数就是vc维 例如以下图所看到的
Codeforces 1093G题解(线段树维护k维空间最大曼哈顿距离)
题意是,给出n个k维空间下的点,然后q次操作,每次操作要么修改其中一个点的坐标,要么查询下标为[l,r]区间中所有点中两点的最大曼哈顿距离. 思路:参考blog:https://blog.csdn.net/Anxdada/article/details/81980574,里面讲了k维空间中的最大曼哈顿距离求法,然后利用这个方案改一改,用线段树来维护这些值就好了. #include<bits/stdc++.h> using namespace std; #define ll long long
RBF神经网络——直接看公式,本质上就是非线性变换后的线性变化(RBF神经网络的思想是将低维空间非线性不可分问题转换成高维空间线性可分问题)
Deeplearning Algorithms tutorial 谷歌的人工智能位于全球前列,在图像识别.语音识别.无人驾驶等技术上都已经落地.而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶.智能助手.图像识别等许多层面.苹果业已开始全面拥抱机器学习,新产品进军家庭智能音箱并打造工作站级别Mac.另外,腾讯的深度学习平台Mariana已支持了微信语音识别的语音输入法.语音开放平台.长按语音消息转文本等产品,在微信图像识别中开始应用.全球前十大科技公司全部发力人工智能理论研究和应用的实现
线段树区间合并+k维空间的曼哈顿距离——cf1093G好题
和去年多校的CSGO一样,用状态压缩来求Manhattan距离的最大值 然后要用线段树维护一下区间最大值 /* k维空间给定n个点,两个操作 1 i b1 b2 .. bk : 修改第i个点的坐标 2 l r:询问[l,r]区间点最大的曼哈顿距离 先考虑不带修: 线段树维护区间2^5种状态的最大值 查询时只要求出相对的两个状态的最大值即可 关于这个贪心的证明: 首先因为绝对值,所以aij前面带的符号可能是-也可能是+,总共就是有关2^k种可能 那么考虑每种状态 S 的最大值,加上相对这种状态 (
二维数组&多维数组
1.二维数组 二维数组由多个一维数组组成,其定义方式: ,]{ {,,,}, {,,,}, {,,,} }; 二维数组中括号中,逗号左边表示一维数组的个数,也可以说控制行,逗号后面的数表示每个一维数组里面有几个元素,也可以说控制列. 练习:1.输入班级人数,输入每个人的语数英成绩,并输出 Console.Write("请输入班级人数:"); int a = int.Parse(Console.ReadLine()); ]; ; i < a; i++) { Console.Writ
Oracle通用维、父子维相互转换
所谓通用维即维度层级1.2.3均作为字段展示为列,父子维即维度id+父级维度+维度层级字段 通用维 lvl_id1 lvl_name1 lvl_id2 lvl_name2 lvl_id3 lvl_name3 父子维 id parent_id id_lvl oracle通用维转父子维 将顶级机构抽取插入:Insert i
热门专题
Oracle split子分区
secret 镜像仓库
centos 8 docker 启动
win10停止服务bat
oracl安装 enter the full
判断list 对象值一样 SequenceEqual
Python字典保存JSON
openwrt 爬虫
jupyter notebook 背景
SqlParameter无法使用list动态添加
java.util.concurrent 1.8报错
mapper批量加载xml
tp5设置header没反应
Web Uploader java vue断点续传
vue播放mp3显示进度条
安全加固后切root
redhat 7 home分区丢失
svn http 方式访问不了
java虚拟机的工作机制
oracle怎样重启