读取csv的代码: print pd.read_csv("ex1.csv") print "\n" print "Can also use read table with a specific separator" print pd.read_table("ex1.csv",sep=',') print "\n" print "Read a csv and define a row as its
1.代码:主要写入时表要为小写,否则报错 Could not reflect: requested table(s) not available in Engine from sqlalchemy import create_engine conn_string='oracle+cx_oracle://admin:admin@192.168.923.147:1521/ORCL?charset=utf8' engine = create_engine(conn_string, echo=False
关于Spark SQL,首先会想到一个问题:Apache Hive vs Apache Spark SQL – 13 Amazing Differences Hive has been known to be the component of Big data ecosystem where legacy mappers and reducers are needed to process data from HDFS whereas Spark SQL is known to be the c
pandas最重要的一个功能是,它可以对不同索引的对象进行算数运算.在对象相加时,如果存在不同的索引对,则结果的索引就是该索引对的并集. Series s1=Series([,3.4,1.5],index=['a','c','d','e']) s2=Series([-,3.1],index=['a','c','e','f','g']) s1 Out[]: a 7.3 c -25.0 d 3.4 e 1.5 dtype: float64 s2 Out[]: a -2.1 c 3.6 e -1.5