# K近邻,适用于小型数据集,是很好的基准模型,容易解释 from sklearn.neighbors import KNeighborsClassifier # 线性模型,非常可靠的首选算法,适用于很大的数据集,也适用于高维数据 from sklearn.linear_model import LinearRegression # 朴素贝叶斯,只适用于分类问题,比线性模型速度还快,适用于非常大的数据集和高维数据,但精度通常低于线性模型 from sklearn.linear_model imp