决策树算法 决策树算法主要有ID3, C4.5, CART这三种. ID3算法从树的根节点开始,总是选择信息增益最大的特征,对此特征施加判断条件建立子节点,递归进行,直到信息增益很小或者没有特征时结束. 信息增益:特征 A 对于某一训练集 D 的信息增益 \(g(D, A)\) 定义为集合 D 的熵 \(H(D)\) 与特征 A 在给定条件下 D 的熵 \(H(D/A)\) 之差. 熵(Entropy)是表示随机变量不确定性的度量. \[ g(D, A) = H(D) - H(D \mid A)
关于Scrapy如何安装部署的文章已经相当多了,但是网上实战的例子还不是很多,近来正好在学习该爬虫框架,就简单写了个Spider Demo来实践.作为硬件数码控,我选择了经常光顾的中关村在线的手机页面进行爬取,大体思路如下图所示. # coding:utf-8 import scrapy import re import os import sqlite3 from myspider.items import SpiderItem class ZolSpider(scrapy.Spider):