1. DeepFace:Closing the Gap to Human-Level Performance in Face Verification 最早将深度学习用于人脸验证的开创性工作.Facebook AI实验室出品.动用了百万级的大规模数据库.典型的识别信号提特征+验证信号refine的两步走,对DeepID等后人的工作影响很大. 技术概括 关注了人脸验证流程中的人脸对齐步,采用了比较复杂的3D人脸建模技术和逐块的仿射变换进行人脸对齐.可以解决non-planarity对齐问题. 提出
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1词汇表征 Word representation 原先都是使用词汇表来表示词汇,并且使用1-hot编码的方式来表示词汇表中的词汇. 这种表示方法最大的缺点是 它把每个词孤立起来,这样使得算法对相关词的泛化能力不强 例如:对于已知句子"I want a glass of orange ___ " 很可能猜出下一个词是"juice". 如果模型已知读过了这个句子但是当看见句子"I