首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
deepwalk算法
2024-08-18
Line 算法与deepwalk的对比 和个人理解
用户的关注关系本身就是一个图结构,要从用户关注关系生成用户的embedding表示,其实就是做graph的emebding表示. deepwalk+word2vec 比较简单,效果也还可以.这种方法再此不再介绍. 接下里记下我对line算法的一些理解. 先说line算法要解决的问题. 1.需要能够表示有向图. 2.能够体现节点的权重,边的权重.节点的权重论文中使用了节点的出度作为节点的权重. 3.能够体现节点的结构相似性,其实就是有相似的上下文.这个line算法分别提出了一阶相似和二阶相似. 接
使用DeepWalk从图中提取特征
目录 数据的图示 不同类型的基于图的特征 节点属性 局部结构特征 节点嵌入 DeepWalk简介 在Python中实施DeepWalk以查找相似的Wikipedia页面 数据的图示 当你想到"网络"时,会想到什么?通常是诸如社交网络,互联网,已连接的IoT设备,铁路网络或电信网络之类的事物.在图论中,这些网络称为图. 网络是互连节点的集合.节点表示实体,它们之间的连接是某种关系. 例如,我们可以用图的形式表示一组社交媒体帐户: 节点是用户的数字档案,连接表示他们之间的关系,例如谁跟随谁
DeepWalk论文精读:(3)实验
模块三 1 实验设计 1.1 数据集 BLOGCATALOG[39]:博客作者网络.标签为作者感兴趣的主题. FLICKR[39]:照片分享网站的用户网络.标签为用户的兴趣群组,如"黑白照片". YOUTUBE[40]:视频分享网站的用户网络.标签为用户喜欢的视频种类,如动漫或摔跤. 1.2 baseline模型 SpectralClustering[41]:生成节点的表示时,使用图G的拉普拉斯矩阵的第d小的特征向量.使用拉普拉斯矩阵的特征向量代表作者认为图的割对于分类十分有用. Mo
DeepWalk论文精读:(4)总结及不足
模块4 1 研究背景 随着互联网的发展,社交网络逐渐复杂化.多元化.在一个社交网络中,充斥着不同类型的用户,用户间产生各式各样的互动联系,形成大小不一的社群.为了对社交网络进行研究分析,需要将网络中的节点(用户)进行分类. 2 解决的问题 利用节点在图中的局部结构信息,对社交网络中的结点进行分类.由于这部分信息常常是隐藏的,不体现在初始输入$X$当中,故需要一些算法对结点的局部结构进行挖掘.DeepWalk最重要解决的是网络中节点的集体分类(Collective Classification)或
论文解读(DeepWalk)《DeepWalk: Online Learning of Social Representations》
一.基本信息 论文题目:<DeepWalk: Online Learning of Social Representations>发表时间: KDD 2014论文作者: Bryan Perozzi.Rami Al-Rfou.Steven Skiena论文地址: https://dl.acm.org/citation.cfm?id=2623732 二.前言 普通的邻接矩阵在存储的关系很多时,纬度将变得很高,而进行矩阵分解是一个相当费时复杂的过程,因此通过矩阵分解的方法进行网络的表示学习,目
Network Embedding 论文小览
Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横空出世,似乎一切东西都在被embedding,今天我们要关注的这个领域是Network Embedding,也就是基于一个Graph,将节点或者边投影到低维向量空间中,再用于后续的机器学习或者数据挖掘任务,对于复杂网络来说这是比较新的尝试,而且取得了一些效果. 本文大概梳理了最近几年流行的一些方法和
关于embedding-深度学习基本操作 【Word2vec, Item2vec,graph embedding】
https://zhuanlan.zhihu.com/p/26306795 https://arxiv.org/pdf/1411.2738.pdf https://zhuanlan.zhihu.com/p/53194407 https://zhuanlan.zhihu.com/p/58805184 embedding入门到精通的paper,包括graph embedding Word2Vec算法原理: skip-gram: 用一个词语作为输入,来预测它周围的上下文 cbow: 拿一个词语的上
Graph Embedding:
https://blog.csdn.net/hy_jz/article/details/78877483 基于meta-path的异质网络Embedding-metapath2vec metapath2vec: Scalable Representation Learning for Heterogeneous Networks metapath2vec https://dl.acm.org/citation.cfm?id=3098036是17年发表的,使用基于meta-path的随机游走重构节
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要内容 参考文献 (1) 解决问题 大多数先前的工作,要么是没有考虑到网络的高阶相似度(如谱聚类,DeepWalk,LINE,Node2Vec),要么是考虑了但却使得算法效率很低,不能拓展到大规模网络(如GraRep). (2) 主要贡献 Contribution 1. 将许多现有的NRL算法架构总结
图学习【参考资料2】-知识补充与node2vec代码注解
本项目参考: https://aistudio.baidu.com/aistudio/projectdetail/5012408?contributionType=1 *一.正题篇:DeepWalk.word2vec.node2vec 其它相关项目: 关于图计算&图学习的基础知识概览:前置知识点学习(PGL)[系列一] https://aistudio.baidu.com/aistudio/projectdetail/4982973?contributionType=1 图机器学习(GML)&am
DeepWalk学习
DeepWalk Background 使用机器学习的算法解决问题需要有大量的信息,但是现实世界中的网络中的信息往往比较少,这就导致传统机器学习算法不能在网络中广泛使用. (Ps: 传统机器学习分类问题是学习一种假设,将样本的属性映射到样本的类标签,但是现实网络中的结点属性信息往往比较少,所以传统机器学习方法不适用与网络.) Introduce deepWalk是网络表征学习的比较基本的算法,用于学习网络中顶点的向量表示(即学习图的结构特征即属性,并且属性个数为向量的维数),使得能够应用传统机器
推文《阿里凑单算法首次公开!基于Graph Embedding的打包购商品挖掘系统解析》笔记
推文<阿里凑单算法首次公开!基于Graph Embedding的打包购商品挖掘系统解析>笔记 从17年5月份开始接触Graph Embedding,学术论文读了很多,但是一直不清楚这技术是否真的能应用于工业界? 最近导师转发给我一篇文章,名为<阿里凑单算法首次公开!基于Graph Embedding的打包购商品挖掘系统解析>,眼界大开! 今天就阅读这篇推文,做一些摘录和笔记...侵删! 传送门:http://mp.weixin.qq.com/s/diIzbc0tpCW4xhbIQu
DeepWalk论文精读:(1)解决问题&相关工作
模块1 1. 研究背景 随着互联网的发展,社交网络逐渐复杂化.多元化.在一个社交网络中,充斥着不同类型的用户,用户间产生各式各样的互动联系,形成大小不一的社群.为了对社交网络进行研究分析,需要将网络中的节点(用户)进行分类. 2. 问题描述 给定一个社交网络,以图$G_L=(V,E,X,Y)$的形式表示,其中$X \in \mathbb{R}^{|V| \times S}$ ($S$是每个属性节点的特征空间大小),$Y \in \mathbb{R}^{|V| \times |Y|}$ ($Y$是
B树——算法导论(25)
B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的,能够有效的降低磁盘的I/O操作数,因此我们经常看到有许多数据库系统使用B树或B树的变种来储存数据结构:从结构上看,B树的结点可以有很多孩子,从数个到数千个,这通常依赖于所使用的磁盘的单元特性. 如下图,给出了一棵简单的B树. 从图中我们可以发现,如果一个内部结点包含n个关键字,那么结点就有n+1个孩
分布式系列文章——Paxos算法原理与推导
Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资料后发现,学习Paxos最好的资料是论文<Paxos Made Simple>,其次是中.英文版维基百科对Paxos的介绍.本文试图带大家一步步揭开Paxos神秘的面纱. Paxos是什么 Paxos算法是基于消息传递且具有高度容错特性的一致性算法,是目前公认的解决分布式一致性问题最有效的算法之一
【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚
红黑树——算法导论(15)
1. 什么是红黑树 (1) 简介 上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极端情况是树变成了1条链)时,这些集合操作并不比在链表上执行的快. 于是我们需要构建出一种"平衡"的二叉搜索树. 红黑树(red-black tree)正是其中的一种.它可以保证在最坏的情况下,基本集合操作的时间复杂度是O(lgn). (2) 性质 与普通二叉搜索树不
散列表(hash table)——算法导论(13)
1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列表之前,我们先介绍直接寻址表. 当关键字的全域U(关键字的范围)比较小时,直接寻址是一种简单而有效的技术.我们假设某应用要用到一个动态集合,其中每个元素的关键字都是取自于全域U={0,1,…,m-1},其中m不是一个很大的数.另外,假设每个元素的关键字都不同. 为表示动态集合,我们用一个数组,或称为
虚拟dom与diff算法 分析
好文集合: 深入浅出React(四):虚拟DOM Diff算法解析 全面理解虚拟DOM,实现虚拟DOM
简单有效的kmp算法
以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说程序实现,思想很简单). 模式匹配的经典应用:从一个字符串中找到模式字串的位置.如“abcdef”中“cde”出现在原串第三个位置.从基础看起 朴素的模式匹配算法 A:abcdefg B:cde 首先B从A的第一位开始比较,B++==A++,如果全部成立,返回即可:如果不成立,跳出,从A的第二位开
热门专题
vs2017安装rdlc
Hadoop执行sbin/start-balancer.sh
k8s 进入pod的某个容器
UML画类图表示电子邮件、标题、正文和附件之间的关系
Graphviz为边赋值
pycharm 书签 分组
simpleCacheConfiguration示例
sql orderby 排序如何加if
dart 请求添加代理
mq 队列读写阶段性堵塞
python 播放声音卡住程序 多线程
前端拿到json数据中文乱码
delphi AnsiChar 特殊字符乱码
atomicboolean不能用if判断
jmeter中__V函数
基于ORM写类产生对象,由ORM转成纯生SQL
使用 Swing 和线程实现动态弹球
sun.misc.BASE64Encoder 替换
文本框有onchange事件吗
js的callback