对模型的评估是指对模型泛化能力的评估,主要通过具体的性能度量指标来完成.在对比不同模型的能力时,使用不同的性能度量指标可能会导致不同的评判结果,因此也就意味着,模型的好坏只是相对的,什么样的模型是较好的,不仅取决于数据和算法,还取决于任务需求.本文主要对分类模型的性能度量指标(方法)进行总结. 本文以二分类为例进行介绍. 1.混淆矩阵 1.1 混淆矩阵 对于二分类问题,将模型预测的结果(正例.反例)与实际类别(正例.反例)进行比较,就会产生四种情况: 真正例(true positive, TP)