交叉验证(Cross validation),有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法.于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证. 一开始的子集被称为训练集.而其它的子集则被称为验证集或测试集.交叉验证是一种评估统计分析.机器学习算法对独立于训练数据的数据集的泛化能力(generalize). 我们以分类花的例子来看下: # 加载iris数据集 from sklearn.datasets import load_iris from s