摘要: 提出一种方法——ELBlocker,用于自动检测出Blocking Bugs(prevent other bugs from being fixed). 难度在于这些Blocking Bugs仅占很小的比例( the class imbalance phenomenon). 方法:给定一个训练集,ELBlocker首先把将训练数据划分为多个互斥的集合.对每个集合建立一个分类器,然后根据混合分类器的结果,设定一个阈值(决策边界),把 blocking bugs from non-blocki
A/B testing主要用来检测网站或者APP的两个版本中哪一个更好,它的中心思想是把流量一分为二,一份用作experiment group,访问新的版本,另一份用作control group,访问旧的版本. 假设现在有一个网站,要测试是否增大网页Register的字体,可以增加注册用户. 进行AB testing,首先要选择Unit of Diversion, 就是把实验分成两组的标准.在这个实验中,可以选择unique cookies to view the web page. 然后要选定
R data analysis examples 功效分析 power analysis for one-sample t-test单样本t检验 例1.一批电灯泡,标准寿命850小时,标准偏差50,40小时的差值是巨大的,此研究设定效应值d= (850-810)/50,希望有90%的可能检测到,即功效值为0.9,还希望有95%的把握不误报显著差异, 问需要多少支电灯泡. H0=850,HA=810 library('pwr') pwr.t.test(d=(850-810)/50,power=0.
A Bayes factor (BF) is a statistical index that quantifies the evidence for a hypothesis, compared to an alternative hypothesis (for introductions to Bayes factors, see here, here or here). Although the BF is a continuous measure of evidence, humans