一.词项相似度 elasticsearch支持拼写纠错,其建议词的获取就需要进行词项相似度的计算:今天我们来通过不同的距离算法来学习一下词项相似度算法: 二.数据准备 计算词项相似度,就需要首先将词项向量化:我们可以使用以下两种方法 字符向量化,其将每个字符映射为一个唯一的数字,我们可以直接使用字符编码即可: import numpy as np def vectorize_words(words): lower_words = [word.lower() for word in words]
设置n为字符串s的长度.("我是个小仙女") 设置m为字符串t的长度.("我不是个小仙女") 如果n等于0,返回m并退出.如果m等于0,返回n并退出.构造两个向量v0[m+1] 和v1[m+1],串联0..m之间所有的元素. 2 初始化 v0 to 0..m. 3 检查 s (i from 1 to n) 中的每个字符. 4 检查 t (j from 1 to m) 中的每个字符 5 如果 s[i] 等于 t[j],则编辑代价cost为 0:如果 s[i] 不等于
一.推荐系统简介 推荐系统主要基于对用户历史的行为数据分析处理,寻找得到用户可能感兴趣的内容,从而实现主动向用户推荐其可能感兴趣的内容: 从物品的长尾理论来看,推荐系统通过发掘用户的行为,找到用户的个性化需求,从而将长尾商品准确地推荐给需要它的用户,帮助用户发现那些他们感兴趣但很难发现的商品. 推荐系统使用的是基于邻域的算法,一类是基于用户的协同过滤算法,另一类是基于物品的协同过滤算法: 二.数据集准备 我们采用GroupLens提供的MovieLens数据集 These files conta