首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
EM算法 GMM 推导
2024-10-20
EM算法和GMM模型推导
EM算法简易推导
EM算法推导 网上和书上有关于EM算法的推导,都比较复杂,不便于记忆,这里给出一个更加简短的推导,用于备忘. 在不包含隐变量的情况下,我们求最大似然的时候只需要进行求导使导函数等于0,求出参数即可.但是包含隐变量,直接求导就变得异常复杂,此时需要EM算法,首先求出隐变量的期望值(E步),然后,把隐变量当中常数,按照不包含隐变量的求解最大似然的方法解出参数(M步),反复迭代,最终收敛到局部最优.下面给出EM算法的推导 我们有对数似然函数 \[ L(\theta)=\log P(y|\theta)
【机器学习】EM算法详细推导和讲解
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布的两个参数,均值和方差.这个方法基本上所有概率课本上都会讲,我这就不多说了,不清楚的请百度. 然而现在我面临的是这种情况,我手上的数据是四川人和东北人的身高合集,然而对于其中具体的每一个数据,并没有标定出它来自“东北
EM算法以及推导
EM算法 Jensen不等式 其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有 \[ \lambda f(x) + (1-\lambda)f(y)\ge f(\lambda x + (1-\lambda)f(y)),\ where\ 0\le\lambda\le 1 \] 推广一下,便有 \[ f(\sum_{i=1}^n\lambda_ix_i)\le\sum_{i=1}^n\lambda_if(x_i),\ where \sum_{i=1
EM算法-完整推导
前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来推导一波. Jensen 不等式 在满足: 一个 concave 函数, 即 形状为 "\(\bigcap\)" 的函数 \(f(x)\) \(\lambda_j \ge 0\) \(\sum \limits _j \lambda_j = 1\) 类似于随机变量的分布 的前提条件下, 则有
机器学习-EM算法-GMM模型笔记
GMM即高斯混合模型,下面根据EM模型从理论公式推导GMM: 随机变量X是有K个高斯分布混合而成,取各个高斯分布的概率为φ1,φ2,... ,φK,第i个高斯分布的均值为μi,方差为Σi.若观测到随机变量X的一系列样本x1,x2,...,xn,试估计参数φ,μ,Σ. E-step M-step 将多项分布和高斯分布的参数带入EM模型: 对均值求偏导: 令上式等于0,解的均值: 高斯分布的方差:求偏导,等于0: 多项分布的参数: 得到 拉格朗日乘子法: 由于多项分布的概率和为1,建立拉格朗日方
机器学习五 EM 算法
目录 引言 经典示例 EM算法 GMM 推导 参考文献: 引言 Expectation maximization (EM) 算法是一种非常神奇而强大的算法. EM算法于 1977年 由Dempster 等总结提出. 说EM算法神奇而强大是因为它可以解决含有隐变量的概率模型问题. EM算法是一个简单而又复杂的算法. 说它简单是因为其操作过程就两步, E(expectation)步: 求期望; M(maximization)步, 求极大. 说它复杂,是因为刚刚学习的时候,你会发现EM算法并不像之前的
机器学习笔记(十)EM算法及实践(以混合高斯模型(GMM)为例来次完整的EM)
今天要来讨论的是EM算法.第一眼看到EM我就想到了我大枫哥,EM Master,千里马.RUA!!!不知道看这个博客的人有没有懂这个梗的. 好的,言归正传.今天要讲的EM算法,全称是Expectation maximization.期望最大化. 怎么个意思呢,就是给你一堆观測样本.让你给出这个模型的參数预计.我靠,这套路我们前面讨论各种回归的时候不是已经用烂了吗?求期望,求对数期望,求导为0,得到參数预计值.这套路我懂啊,MLE! 但问题在于,假设这个问题存在中间的隐变量呢?会不会把我们的套路给
EM算法和高斯混合模型GMM介绍
EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{1}\right)$转换为更加易于计算的$\sum_{i=1}^{n} \ln p\left(x_{i}, \theta_{2} | \theta_{1}\right)$,其中$\theta_2$可以取任意的先验分布$q(\theta_2)$.EM算法的推导过程如下:$$\begin{aligned
4-EM算法原理及利用EM求解GMM参数过程
1.极大似然估计 原理:假设在一个罐子中放着许多白球和黑球,并假定已经知道两种球的数目之比为1:3但是不知道那种颜色的球多.如果用放回抽样方法从罐中取5个球,观察结果为:黑.白.黑.黑.黑,估计取到黑球的概率为p; 假设p=1/4,则出现题目描述观察结果的概率为:(1/4)4 *(3/4) = 3/1024 假设p=3/4,则出现题目描述观察结果的概率为:(3/4)4 *(1/4) = 81/1024 由于81/1024 > 3/1024,因此任务p=3/4比1/4更能出现上述观察结果,所以p取
5. EM算法-高斯混合模型GMM+Lasso
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和GMM模型进行了介绍,本文我们通过对GMM增加一个惩罚项. 2. 不带惩罚项的GMM 原始的GMM的密度函数是 \[ p(\boldsymbol{x}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})=\sum_{k=1}^K\pi_k\ma
Machine Learning系列--EM算法理解与推导
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算法,其重要性可见一斑. EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计.它与极大似然估计的区别就是它在迭代过程中依赖极大似然估计方法.极大似然估计是在模型已知的情况下,求解模型的参数$\theta$,让抽样出现的概率最大.类似于求解一元方
EM算法理论与推导
EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计) 从定义可知,该算法是用来估计参数的,这里约定参数为 .既然是迭代算法,那么肯定有一个初始值,记为 ,然后再通过算法计算 通常,当模型的变量都是观测变量时,可以直接通过极大似然估计法,或者贝叶斯估计法估计模型参数.但是当模型包含隐变量时,就不能简单的使用这些估计方法 举个具体的栗子: 永远在你身后:Matplotlib输出动画实现K
【机器学习】GMM和EM算法
机器学习算法-GMM和EM算法 目录 机器学习算法-GMM和EM算法 1. GMM模型 2. GMM模型参数求解 2.1 参数的求解 2.2 参数和的求解 3. GMM算法的实现 3.1 gmm类的定义和实现 3.2 测试 4. EM算法 1. GMM模型 聚类问题是一个经典的无监督任务,其目标是将 \(N\) 个 \(D\) 维数据 \(\{\bf{x}_i\}_{i=1}^N\) 分成\(K\)个簇,使得每个簇中的样本尽可能相似.GMM算法对数据分布做了一些假设: 第\(k\)个簇数据点
猪猪的机器学习笔记(十四)EM算法
EM算法 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大期望算法.它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计.EM算法经常用于机器学习和机器视觉的聚类领域,是一个非常重要的算法.而EM算法本身从使用上来讲并不算难,但是如果需要真正的理解则需要许多知识的相互串联. 引言: EM算法是机器学习十大经典算法之一.
EM算法(Expectation Maximization Algorithm)初探
1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b:P2:-P2 为了估计这个概率(我们事先是不知道这两枚硬币正面朝上的概率的),我们需要通过实验法来进行最大似然估计,每次取一枚硬币,连掷5下,记录下结果 硬币 结果 统计 Coin_a 正 正 反 正 反 3正-2反 Coin_b 反 反 正 正 反 2正-3反 Coin_a 正 反 反 反 反 1
机器学习之EM算法(五)
摘要 EM算法全称为Expectation Maximization Algorithm,既最大期望算法.它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计.EM算法经常用于机器学习和机器视觉的聚类领域,是一个非常重要的算法.而EM算法本身从使用上来讲并不算难,但是如果需要真正的理解则需要许多知识的相互串联. 引言 EM算法是机器学习十大经典算法之一.EM算法既简单有复杂,简单的在于他的思想而复杂则在于他的数学推理和复杂的概率公式.作为我这个新手来讲,决定先捡大的部
EM算法(Expectation Maximization Algorithm)
EM算法(Expectation Maximization Algorithm) 1. 前言 这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的<统计学习方法>书以及斯坦福机器学习课Andrew Ng的EM算法课后,对EM算法学习的介绍性笔记,如有写得不恰当或错误的地方,请指出,并多多包涵,谢谢.另外本人数学功底不是很好,有些数学公式我会说明的仔细点的,如果数学基础好,可直接略过. 2.基础数学知识 在正式介绍EM算法之前,先介绍推导EM算
机器学习-EM算法笔记
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断,混合高斯模型GMM,基于概率统计的pLSA模型. EM算法概述(原文) 我们经常会从样本观察数据中,找出样本的模型参数. 最常用的方法就是极大化模型分布的对数似然函数. 但是在一些情况下,我们得到的观察数据有未观察到的隐含数据,此时我们未知的有隐含数据和模型参数,因而无法直接用极大化对数似然函数得到模型分布的参
EM算法 小结
猴子吃果冻 博客园 首页 新随笔 联系 管理 订阅 随笔- 35 文章- 0 评论- 3 4-EM算法原理及利用EM求解GMM参数过程 1.极大似然估计 原理:假设在一个罐子中放着许多白球和黑球,并假定已经知道两种球的数目之比为1:3但是不知道那种颜色的球多.如果用放回抽样方法从罐中取5个球,观察结果为:黑.白.黑.黑.黑,估计取到黑球的概率为p; 假设p=1/4,则出现题目描述观察结果的概率为:(1/4)4 *(3/4) = 3/1024 假设p=3/4,则出现题目描述观察结果的概率
概率图模型之EM算法
一.EM算法概述 EM算法(Expectation Maximization Algorithm,期望极大算法)是一种迭代算法,用于求解含有隐变量的概率模型参数的极大似然估计(MLE)或极大后验概率估计(MAP).EM算法是一种比较通用的参数估计算法,被广泛用于朴素贝叶斯.GMM(高斯混合模型).K-means(K均值聚类)和HMM(隐马尔科夫模型)的参数估计. 隐变量是指不能被直接观察到,但是对系统的状态和能被观察到的变量存在影响的变量,比如经典的三硬币模型中,能被观察到的变量是在某次实验中,
热门专题
pg数据库 instr
springboot 读取服务器文件
centos6无法识别到exfat硬盘
windows 瀚高数据库hg_rman
v-decorator初始值
重定向为什么不能用@RestController注解
Esxi虚拟化 openwrt
matlab solve()函数的使用三角高数
虚拟机打开镜像文件没反应
jdbc连接数据库5个步骤
cTeX表格后面加注明
tcpwrapped 漏洞
emacs 设置缩进
mysql 有没有forxmlpath功能
java textmessage实例化
python解矩阵齐次线性方程组
nginx动静分离后,静态资源没完全加载完
cefsharp 监听网页内存 performance
erlang 多线程
java 打成jar包保留注释