自编码(Autoencoder)介绍 Autoencoder是一种无监督的学习算法,将输入信息进行压缩,提取出数据中最具代表性的信息.其目的是在保证重要特征不丢失的情况下,降低输入信息的维度,减小神经网络的处理负担.简单来说就是提取输入信息的特征.类似于主成分分析(Principal Components Analysis,PAC) 对于输入信息X,通过神经网络对其进行压缩,提取出数据的重要特征,然后将其解压得到数据Y,然后通过对比X与Y求出预测误差进行反向传递,逐步提升自编码的准确性.训练完成