关于有源上下界最大流: https://blog.csdn.net/regina8023/article/details/45815023 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int n, m, k, l, r, s, t, superS, superT; ;//点数的最大值 ;//边数的最大值 const int INF = 0x3f3f3f3f; st
前言: FISTA(A fast iterative shrinkage-thresholding algorithm)是一种快速的迭代阈值收缩算法(ISTA).FISTA和ISTA都是基于梯度下降的思想,在迭代过程中进行了更为聪明(smarter)的选择,从而达到更快的迭代速度.理论证明:FISTA和ISTA的迭代收敛速度分别为O(1/k2)和O(1/k). 本篇博文先从解决优化问题的传统方法“梯度下降”开始,然后引入ISTA,最后再上升为FISTA.文章主要参考资料如下: [1] A Fas
一.函数的渐近的界 我们在研究算法性能的时候,往往会在意算法的运行时间,而运行时间又与算法输入的规模相关,对于一个算法,我们可以求出运行时间和输入规模的函数,当输入规模足够大时,站在极限的角度看,就可以求出运行时间如何随着输入规模的无限增长而增长. 这种令输入规模无限大 而研究运行时间增长情况的做法,就是在研究算法的渐近效率. 几种符号的直观理解: Θ,O,Ω的图像表示 Θ(渐近紧确界):若 f ( n ) = Θ ( g ( n )),则存在 c1>0 ,c2 >0,s.t. n
题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a bipartite graph is a fantastic graph. He has two fantastic numbers, and he wants to let all the degrees to between
"Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a bipartite graph is a fantastic graph. He has two fantastic numbers, and he wants to let all the degrees to between the two boundaries. You can pick up sev
"Oh, There is a bipartite graph.""Make it Fantastic."X wants to check whether a bipartite graph is a fantastic graph. He has two fantastic numbers, and he wants to let all the degrees to between the two boundaries. You can pick up seve
正解: #include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const int MAXN=10010;//点数的最大值 const int MAXM=400010;//边数的最大值 #define captype int struct SAP_MaxFlow{ struct EDGE{ int to,next; captype cap; }edg[MAXM]; int eid,head[MAXN];