Pre-trained models Model name LFW accuracy Training dataset Architecture 20180408-102900 0.9905 CASIA-WebFace Inception ResNet v1 20180402-114759 0.9965 VGGFace2 Inception ResNet v1 Model name LFW accuracy Training dataset Architecture 20170511-18525
1. 导入各种包 from mxnet import gluon import mxnet as mx from mxnet.gluon import nn from mxnet import ndarray as nd import matplotlib.pyplot as plt import cv2 from mxnet import image from mxnet import autograd 2. 导入数据 我使用cifar10这个数据集,使用gluon自带的模块下载到本地并且为了
本文来自<FaceNet: A Unified Embedding for Face Recognition and Clustering>.时间线为2015年6月.是谷歌的作品. 0 引言 虽然最近人脸识别领域取得了重大进展,但大规模有效地进行人脸验证和识别还是有着不小的挑战.Florian Schroff等人因此提出了FaceNet模型,该模型可以直接将人脸图片映射到欧式空间中.在该空间中,欧式embedding可以用平方的L2距离直接表示人脸的相似度: 相同ID的人脸距离较小: 不同ID
1. DeepFace:Closing the Gap to Human-Level Performance in Face Verification 最早将深度学习用于人脸验证的开创性工作.Facebook AI实验室出品.动用了百万级的大规模数据库.典型的识别信号提特征+验证信号refine的两步走,对DeepID等后人的工作影响很大. 技术概括 关注了人脸验证流程中的人脸对齐步,采用了比较复杂的3D人脸建模技术和逐块的仿射变换进行人脸对齐.可以解决non-planarity对齐问题. 提出