由于最近正在做图像超分辨重建方面的研究,有幸看到了杨建超老师和马毅老师等大牛于2010年发表的一篇关于图像超分辨率的经典论文<ImageSuper-Resolution Via Sparse Representation>,于是对该论文进行大概的翻译,如有不当之处,还请大家帮忙多多指正!!! 英文原文:Jianchao Yang, John Wright, Thomas Huang, and Yi Ma. Image super-resolution via sparse representa
Rasmus Rothe, Radu Timofte, Luc Van Gool DEX:从单一形象深刻地看待年龄 观看 人物研讨会国际计算机视觉大会(ICCV),2015*获胜LAP面对年龄估计的挑战* NVIDIA ChaLearn LAP 2015最佳论文奖 在本文中,我们通过深度学习来处理静态脸部图像的表观年龄估计.我们的卷积神经网络(CNN)使用VGG-16架构,并在ImageNet上预先进行图像分类.另外,由于有明显的年龄注明图像数量有限,我们探索了可用年龄的爬网式互联网面部图像的优
[学习源]Tutorials > Deep Learning with PyTorch: A 60 Minute Blitz > Training a Classifier 本文相当于对上面链接教程中自认为有用部分进行的截取.翻译和再注释.便于日后复习.修正和补充. 边写边查资料的过程中猛然发现这居然有中文文档--不过中文文档也是志愿者翻译的,仅仅是翻译,也没有对知识点的扩充,不耽误我写笔记.这篇笔记就继续写下去吧.附PyTorch 中文教程 & 文档 > 训练分类器 一.准
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的文章,个人非常喜欢,也列出来了. 33. SIFT关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了.SURF和PCA-SIFT也是属于这个系列.后面列出了几篇跟SIFT有关的问题.[1999 ICCV] Object recognition from local scale-invar
DBoW2库是University of Zaragoza里的Lopez等人开发的开源软件库. 由于在SLAM回环检测上的优异表现(特别是ORB-SLAM2),DBoW2库受到了广大SLAM爱好者的关注.本文希望通过深入解析DBoW2库及相关的DLoopDetector库,为读者后续使用这两个库提供参考. git地址: DBoW2 DLoopDetector 论文:Bags of Binary Words for Fast Place Recognition in Image Sequences