首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Fedora28没有安装英伟达显卡黑屏怎么办
2024-08-28
Fedora20安装完Nvidia后启动一直黑屏解决办法。
安装完Fedora20后,把Nvidia驱动装上后重起机器一直黑屏时,切换到命令行下:Alt+F2 登陆上去,然后直接更新: su -c ‘yum update’ ,再重起就OK了.
Ubuntu18.04安装英伟达显卡驱动
前几天买了一张RTX2060显卡,想自学一下人工智能,跑一些图形计算,安装Ubuntu18.04后发现英伟达显卡驱动安装还是有点小麻烦,所以这里记录一下安装过程,以供参考: 1.卸载系统里低版本的英伟达驱动 sudo apt-get purge nvidia* 2.把显卡驱动加入PPA sudo add-apt-repository ppa:graphics-drivers sudo apt-get update 3.查找英伟达显卡驱动最新版本号 sudo apt-cache search nv
Ubuntu无法安装 英伟达显卡
安装Ubuntu无法正常驱动英伟达,这时需要在启动参数中添加nomodset 如果不会添加参数可以参考这篇文章:安装ubuntu时黑屏三种解决办法
CentOS7.X安装英伟达显卡采坑之路
1.系统信息 操作系统版本:CentOS7.X 显卡版本:英伟达 Tesla P100 其他软件包安装信息: CUDA 9.0 CUDNN 7.4.2.24 lightgbm 2.2.X Boost 1.61 CMake 3.12 特别说明,如果没有在官网找到你的显卡版本对应的驱动,请尽快寻找你的显卡提供商确认驱动信息,不要轻易尝试:那就是在浪费时间,切记! 2.安装P100驱动 这里安装P100驱动的方式,通过Yum Rpm包的安装方式,其他相关的Linux系统可以通过对应的包管理或者二进制的
Windows Installer服务总是自动关闭导致无法安装在win10上安装英伟达显卡驱动的解决方案
你可以依次点击"开始→程序→附件→命令提示符",键入:msiexec /unregister, 然后再键入msiexec /regserver.应该就能解决. 更多的参考:How to Start/Stop Windows Installer service Win+R 输入 msconfig 后可以自行改变启动选项.
deepin20 安装英伟达闭源驱动
第一步.安装深度的"显卡驱动器" 在deepin v20 中默认没有显卡驱动管理器,需要命令行安装,命令如下(刚开始一直出错,当我第一次打开应用商店,就可以安装了,好神奇): sudo apt install deepin-graphics-driver-manager 安装深度的"显卡驱动器",切换到因特尔默认驱动,然后重启两次,确认切换成功后,进行下一步. 第二步.卸载英伟达开源驱动 如果刚刚安装好系统,什么都没操作,那么这一步可以省略. sudo apt au
【并行计算-CUDA开发】从熟悉到精通 英伟达显卡选购指南
举报 说到显卡,就不免令人想到英伟达和AMD两家面向个人消费级和企业级最大的显示芯片生产企业,英伟达和AMD,今天小编为大家简单的介绍一下英伟达的显卡选购方面的攻略,为一些想要购买显卡的用户提供一些参考. 从熟悉到精通 英伟达显卡N卡选购指南 英伟达公司的产品主要为五大类,包括:GeForce(精视显卡).Tegra(图睿移动处理器).ION(离子平台主板芯片).Quadro(专业图形卡).Tesla(服务器显示核心)等不同领域的产品分类.今天我们要讲的是英伟达的面向个人消费级的精视GeForc
debian 10安装英伟达独显驱动
我的显卡是GTX1050TI,刚安装好Debian 10的时候启动会黑屏,无法进入系统,解决办法是在grub界面,按e修改启动参数,在启动参数那一行(一般会包含quiet)后面加上 nouveau.modeset=0 目的是禁用开源的独显驱动,应该就是这个驱动导致无法进入系统的 进入系统之后,配置好软件源,注意要包含 non-free 才可以用下面的方法安装 nvidia驱动 驱动的安装只需要一行代码 sudo apt install nvidia-settings 安装好之后会运行配置程序,配
银河麒麟v4_sp4安装英伟达驱动
bios设置视频输出为auto模式 视频线插独立显卡上 先dpkg 安装两个deb包 1.禁用开源驱动:sudo vim /etc/modprobe.d/blacklist.conf,在里面添加 blacklist nouveau 2.先备份一个原来的/boot/initrd.img-xxxx那个文件,然后sudo update-initramfs -u重新生成initrd.img 3.重启:reboot 4.进入系统后打开终端输入:sudo service lightdm stop 5.ctr
CUDA学习笔记4:CUDA(英伟达显卡统一计算架构)代码运行时间测试
CUDA内核运行时间的测量函数 cudaEvent_t start1; cudaEventCreate(&start1); cudaEvent_t stop1; cudaEventCreate(&stop1); cudaEventRecord(start1, NULL); // 需要测时间的内核函数kernel; cudaEventRecord(stop1, NULL); cudaEventSynchronize(stop1); float msecTotal1 = 0.0f; cudaE
CUDA学习笔记2:CUDA(英伟达显卡统一计算架构)与已有的VS项目结合
一.步骤 1.先新建一个简单的控制台应用程序,项目名称为Mytest,如下图所示: 2.在项目中添加一个名为Test.cu文件,如下图所示: 3.在解决方案资源管理器中选择该项目并点击右键,在弹出的菜单中选择“生成自定义…”,如下图所示: 4.最后,打开项目的属性页,如下图所示,在“配置属性”——“链接器”——“输入”中的“附件依赖项”里面添加 cublas.libcuda.libcudadevrt.libcudart.libcudart_static.libnvcuvid.libOpenCL.
ubuntu命令查看英伟达显卡型号
在终端输入如下命令:nvidia-smi
Win + Manjaro 双系统、双硬盘安装方法 正确引导系统方法 黑屏解决方法(不瞎写,百分百有用)
1. 前言 本教程只涉及 Win + Manjaro 双系统.双硬盘安装过程中的核心要点,不涉及具体步骤,不注意这些要点,安装之后是进不去 Manjaro 系统的. 详细的安装步骤网上已经有很多了,这里不再给出,可以参看以下文章,熟悉流程: 安装 Manjaro 双系统 Manjaro开机黑屏卡住_显卡驱动问题解决及配置源和搜狗输入法安装 你可能遇到的问题: 你有一个固态硬盘安装了 Win10 系统,还有一个机械硬盘划分出了 100G 空间,按照上述文章中所说的步骤,把 Manjaro 安装在了
Linux 安装 Nvidia 驱动出现的黑屏各种问题和解决方式
之前因为想OBS支持h264-nvenc这个功能然后就编译ffmpeg,然后使用Github上面的一个编译项目),项目编译完成之后重启电脑,然后就进入不了系统的登录页面了,选择进入Linux系统之后就一直黑屏,最后不知道什么原因,只能重装,花了我一个晚上弄才把i3-wm桌面弄好,真的不想再来一次了. 在重新安装linux-mint的过程中有几个值得注意的点: 引导项安装在 windows和Mac在的盘符(启动的时候可以直接引导) 安装完配置之后很有必要备份一下系统,这样子下次系统出现问题之后就可
第一篇:CUDA 6.0 安装及配置( WIN7 64位 / 英伟达G卡 / VS2010 )
前言 本文讲解如何在VS 2010开发平台中搭建CUDA开发环境. 当前配置: 系统:WIN7 64位 开发平台:VS 2010 显卡:英伟达G卡 CUDA版本:6.0 若配置不同,请谨慎参考本文. 第一步:下载CUDA 点击这里下载 cuda最新版.得到类似: cuda_6.0.37_winvista_win7_win8.1_general_64.exe 类型的安装包. 第二步:设置安装路径 运行安装程序,弹出安装过程中转文件路径设定框: 这个路径随便填无所谓,安装完后就会自动删除的,我就直接
NCCL(Nvidia Collective multi-GPU Communication Library) Nvidia英伟达的Multi-GPU多卡通信框架NCCL 学习;PCIe 速率调研;
为了了解,上来先看几篇中文博客进行简单了解: 如何理解Nvidia英伟达的Multi-GPU多卡通信框架NCCL?(较为优秀的文章) 使用NCCL进行NVIDIA GPU卡之间的通信(GPU卡通信模式测试) nvidia-nccl 学习笔记 (主要是一些接口介绍) https://developer.nvidia.com/nccl (官方网站) https://github.com/NVIDIA/nccl (官方仓库) https://www.cnblogs.com/xuyaowen/p/het
【并行计算与CUDA开发】英伟达硬件加速编解码
硬件加速 并行计算 OpenCL OpenCL API VS SDK 英伟达硬件编解码方案 基于 OpenCL 的 API 自己写一个编解码器 使用 SDK 中的编解码接口 使用编码器对于 OpenCL 和 SDK 的封装 硬件加速 硬件加速的学术名称是 GPGPU(General-purpose computing on graphicsprocessing units),中文名称是通用图形处理器.最基本的思想是使用 GPU 的运算能力完成原本需要 CPU 来进行的运算. 并行计算 GPU 是
英伟达CUVID硬解,并通过FFmpeg读取文件
虽然FFmpeg本身有cuvid硬解,但是找不到什么好的资料,英伟达的SDK比较容易懂,参考FFmpeg源码,将NVIDIA VIDEO CODEC SDK的数据获取改为FFmpeg获取,弥补原生SDK不能以流作为数据源的不足.所用SDK版本为Video_Codec_SDK_7.1.9,英伟达官网可下载. 1.修改数据源 首先是FFmpeg的一些常规的初始化 bool VideoSource::init(const std::string sFileName, FrameQueue *pFram
不用写代码就能实现深度学习?手把手教你用英伟达 DIGITS 解决图像分类问题
2006年,机器学习界泰斗Hinton,在Science上发表了一篇使用深度神经网络进行维数约简的论文 ,自此,神经网络再次走进人们的视野,进而引发了一场深度学习革命.深度学习之所以如此受关注,是因为它在诸如图像分类.目标检测与识别.目标跟踪.语音识别.游戏(AlphaGo)等多个领域取得了相当优秀的成绩,掀起了又一波人工只能浪潮.深度学习技术逐渐成为机器学习领域的前沿技术,近年来得到了突飞猛进的发展,这得益于机器学习技术的进步以及计算设备性能的提升.英伟达公司研发的图形处理器(Graphics
【视频开发】【CUDA开发】英伟达CUVID硬解,并通过FFmpeg读取文件
虽然FFmpeg本身有cuvid硬解,但是找不到什么好的资料,英伟达的SDK比较容易懂,参考FFmpeg源码,将NVIDIA VIDEO CODEC SDK的数据获取改为FFmpeg获取,弥补原生SDK不能以流作为数据源的不足.所用SDK版本为Video_Codec_SDK_7.1.9,英伟达官网可下载. 1.修改数据源 首先是FFmpeg的一些常规的初始化 bool VideoSource::init(const std::string sFileName, FrameQueue *pFram
玩深度学习选哪块英伟达 GPU?有性价比排名还不够!
本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完全在另一个量级上. 而 GPU 的选择,会在根本上决定你的深度学习体验.那么,对于一名 DL 开发者,应该怎么选择合适的 GPU 呢?这篇文章将深入讨论这个问题,聊聊有无必要入手英特尔协处理器 Xeon Phi,并将各主流显卡的性能.性价比制成一目了然的对比图,供大家参考. 先来谈谈选择 GPU 对
热门专题
abp 事件处理程序没有注册上
Linux基于lamp搭建wordpress端口i拍配置
mongodb连接池配置等待队列大小
消费者怎么保证ExactlyOnce
centos7mysql自动备份
Python豆瓣镜像
java lambda 过滤l一个字段是否在另一个list中
linux安装内核脚本
Chrome v8是什么
mysql 遍历一个月中每一天
vue前端访问静态json文件报404
whiptail 安装程序交互界面
window.location跳转页面后无法回退
Qt的窗口刷新机制是什么样子的
sqlserver 2008R2 Insert 中文显示问号
getLocation转化城市
curl 命令 发布删除 geoserver图层
beetl 输出的map是=号
bugzilla统计
android button 文字分两行