场感知分解机(Field-aware Factorization Machine ,简称FFM)在FM的基础上进一步改进,在模型中引入类别的概念,即field.将同一个field的特征单独进行one-hot,因此在FFM中,每一维特征都会针对其他特征的每个field,分别学习一个隐变量,该隐变量不仅与特征相关,也与field相关.假设样本的n个特征属于f个field,那么FFM的二次项有nf个隐向量.而在FM模型中,每一维特征的隐向量只有一个.FM可以看做FFM的特例,把所有特征都归属到一个fi