Fisher线性判别分析 1.概述 在使用统计方法处理模式识别问题时,往往是在低维空间展开研究,然而实际中数据往往是高维的,基于统计的方法往往很难求解,因此降维成了解决问题的突破口. 假设数据存在于d维空间中,在数学上,通过投影使数据映射到一条直线上,即维度从d维变为1维,这是容易实现的,但是即使数据在d维空间按集群形式紧凑分布,在某些1维空间上也会难以区分,为了使得数据在1维空间也变得容易区分,需要找到适当的直线方向,使数据映射在该直线上,各类样本集群交互较少.如何找到这条直线,或者说如何找到