首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
flink实现数据集成
2024-11-10
字节跳动流式数据集成基于Flink Checkpoint两阶段提交的实践和优化
背景 字节跳动开发套件数据集成团队(DTS ,Data Transmission Service)在字节跳动内基于 Flink 实现了流批一体的数据集成服务.其中一个典型场景是 Kafka/ByteMQ/RocketMQ -> HDFS/Hive .Kafka/ByteMQ/RocketMQ -> HDFS/Hive(下面均称之为 MQ dump,具体介绍可见 字节跳动基于Flink的MQ-Hive实时数据集成 ) 在数仓建设第一层,对数据的准确性和实时性要求比较高. 目前字节跳动中国区 M
DataPipeline CTO陈肃:从ETL到ELT,AI时代数据集成的问题与解决方案
引言:2018年7月25日,DataPipeline CTO陈肃在第一期公开课上作了题为<从ETL到ELT,AI时代数据集成的问题与解决方案>的分享,本文根据陈肃分享内容整理而成. 大家好!很高兴今天有机会和大家分享一些数据集成方面的看法和应用经验.先自我介绍一下.我叫陈肃,博士毕业于中国科学院大学,数据挖掘研究方向.现在北京数见科技(DataPipeline)任 CTO.之前在中国移动研究院任职算法工程师和用户行为实验室技术经理,之后作为合伙人加入过一家互联网教育公司,从事智能学习方面的研发
DataPipeline丨构建实时数据集成平台时,在技术选型上的考量点
文 | 陈肃 DataPipeline CTO 随着企业应用复杂性的上升和微服务架构的流行,数据正变得越来越以应用为中心. 服务之间仅在必要时以接口或者消息队列方式进行数据交互,从而避免了构建单一数据库集群来支撑不断增长的业务需要.以应用为中心的数据持久化架构,在带来可伸缩性好处的同时,也给数据的融合计算带来了障碍. 由于数据散落在不同的数据库.消息队列.文件系统中,计算平台如果直接访问这些数据,会遇到可访问性和数据传输延迟等问题.在一些场景下,计算平台直接访问应用系统数据库会对系统吞吐造成显
阿里云DataWorks实践:数据集成+数据开发
简介 什么是DataWorks: DataWorks(数据工场,原大数据开发套件)是阿里云重要的PaaS(Platform-as-a-Service)平台产品,为您提供数据集成.数据开发.数据地图.数据质量和数据服务等全方位的产品服务,一站式开发管理的界面,帮助企业专注于数据价值的挖掘和探索. DataWorks支持多种计算和存储引擎服务,包括离线计算MaxCompute.开源大数据引擎E-MapReduce.实时计算(基于Flink).机器学习PAI.图计算服务Graph Compute和交互
Kafka ETL 之后,我们将如何定义新一代实时数据集成解决方案?
上一个十年,以 Hadoop 为代表的大数据技术发展如火如荼,各种数据平台.数据湖.数据中台等产品和解决方案层出不穷,这些方案最常用的场景包括统一汇聚企业数据,并对这些离线数据进行分析洞察,来达到辅助决策或者辅助营销的目的,像传统的 BI 报表.数据大屏.标签画像等等. 但企业中除了这样的分析型业务(OLAP),还同时存在对数据实时性要求更高的交互型业务场景(OLTP 或 Operational Applications),例如电商行业常见的统一商品或订单查询.金融行业的实时风控.服务行业的客户
Oracle 数据集成的实际解决方案
就针对市场与企业的发展的需求,Oracle公司提供了一个相对统一的关于企业级的实时数据解决方案,即Oracle数据集成的解决方案.以下的文章主要是对其解决方案的具体描述,望你会有所收获. Oracle 数据集成解决方案 Oracle数据集成解决方案用于在SOA.BI和数据仓库环境中构建.部署和管理以实时数据为中心的架构,包含了Oracle数据集成的所有要素--实时数据移动.转换.同步.数据质量.数据管理和数据服务--能确保各个复杂系统的信息及时.准确.一致. 通过使用Oracle数据集成,企业将
基于Kafka Connect框架DataPipeline可以更好地解决哪些企业数据集成难题?
DataPipeline已经完成了很多优化和提升工作,可以很好地解决当前企业数据集成面临的很多核心难题. 1. 任务的独立性与全局性. 从Kafka设计之初,就遵从从源端到目的的解耦性.下游可以有很多个Consumer,如果不是具有这种解耦性,消费端很难扩展.企业做数据集成任务的时候,需要源端到目的端的协同性,因为企业最终希望把握的是从源端到目的端的数据同步拥有一个可控的周期,并能够持续保持增量同步.在这个过程中,源端和目的端相互独立的话,会带来一个问题,源端和目的端速度不匹配,一快一慢,造成数
基于Kafka Connect框架DataPipeline在实时数据集成上做了哪些提升?
在不断满足当前企业客户数据集成需求的同时,DataPipeline也基于Kafka Connect 框架做了很多非常重要的提升. 1. 系统架构层面. DataPipeline引入DataPipeline Manager的概念,主要用于优化Source和Sink的全局化生命周期管理.当任务出现异常时,可以实现对目的端和全局生命周期的管理.例如,处理源端到目的端读取速率不匹配以及暂停等状态的协同. 为了加强系统的健壮性,我们把Connector任务的参数保存在ZooKeeper中,方便任务重启后读
以Kafka Connect作为实时数据集成平台的基础架构有什么优势?
Kafka Connect是一种用于在Kafka和其他系统之间可扩展的.可靠的流式传输数据的工具,可以更快捷和简单地将大量数据集合移入和移出Kafka的连接器.Kafka Connect为DataPipeline提供了一个相对成熟稳定的基础框架,还提供了一些开箱即用的工具,大大地降低研发的投入和提升应用的质量. 下面,我们看一看Kafka Connect的具体优势. 首先,Kafka Connect提供的是以数据管道为中心的业务抽象.在Kafka Connect里有两个核心概念:Source和S
【ODI】| 数据ETL:从零开始使用Oracle ODI完成数据集成(三)
资料库的创建.体系结构的创建.模型反向工程都已经完成了,下面就是创建以及执行接口来完成工作了. 浏览前两节请点击: [ODI]| 数据ETL:从零开始使用Oracle ODI完成数据集成(一) [ODI]| 数据ETL:从零开始使用Oracle ODI完成数据集成(二) 8. 创建项目及接口 项目包含了开发人员所开发的所有对象,项目包含的元素有接口.过程.包.变量.用户定义函数等.项目创建完毕后,即可在项目下创建接口来实现数据集成. [设计器]>>[项目]>>[新建项目] 为项目自
【ODI】| 数据ETL:从零开始使用Oracle ODI完成数据集成(二)
前一节已经完成了Oracle数据库和ODI的安装,并已经为ODI在Oracle数据库中创建了两个用户,分别用于存放主资料库数据和工作资料库数据,在ODI中完成主资料库和工作资料库的创建,也分别为其创建了登陆用户,最后,登陆到ODI的工作资料库中,在工作资料库中,我们就可以完成数据的集成工作了,下面是一个简单的数据集成工作场景,我们用ODI完成这项工作. 浏览前一节请点此:[ODI]| 数据ETL:从零开始使用Oracle ODI完成数据集成(一) 4. 工作场景说明 工作场景说明: 业务系统A使
【ODI】| 数据ETL:从零开始使用Oracle ODI完成数据集成(一)
0. 环境说明及软件准备 ODI(Oracle Data Integrator)是Oracle公司提供的一种数据集成工具,能高效地实现批量数据的抽取.转换和加载.ODI可以实现当今大多数的主流关系型数据库(Oracle.DB2.SQL Server.MySQL.SyBase)的集成. ODI提供了图形化客户端和agent(代理)运行程序.客户端软件主要用于对整个数据集成服务的设计,包括创建对数据源的连接架构.创建模型及反向表结构.创建接口.生成方案和计划等.Agent运行程序是通过命令行方式在O
打造实时数据集成平台——DataPipeline基于Kafka Connect的应用实践
导读:传统ETL方案让企业难以承受数据集成之重,基于Kafka Connect构建的新型实时数据集成平台被寄予厚望. 在4月21日的Kafka Beijing Meetup第四场活动上,DataPipeline CTO陈肃分享了DataPipeline是如何基于Kafka Connect框架构建实时数据集成平台的应用实践.以下内容是基于现场录音整理的文字,供大家参考. 什么是数据集成?最简单的应用场景就是:一个数据源,一个数据目的地,数据目的地可以一个数据仓库,把关系型数据库的数据同步到数据仓库
数据集成工具Kettle、Sqoop、DataX的比较
数据集成工具很多,下面是几个使用比较多的开源工具. 1.阿里开源软件:DataX DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL.Oracle等).HDFS.Hive.ODPS.HBase.FTP等各种异构数据源之间稳定高效的数据同步功能. 2.Apache开源软件:Sqoop Sqoop(发音:skup)是一款开源的工具,主要用于在HADOOP(Hive)与传统的数据库(mysql.postgresql...)间进行数据的传递,可以将一个关系型
资料:MVC框架+SQL Server 数据集成引擎
ylbtech-资料:MVC框架+SQL Server 数据集成引擎 1.返回顶部 1. 功能特点: MVC框架耦合性低视图层和业务层分离,这样就允许更改视图层代码而不用重新编译模型和控制器代码,同样,一个应用的业务流程或者业务规则的改变只需要改动MVC的模型层即可.因为模型与控制器和视图相分离,所以很容易改变应用程序的数据层和业务规则.模型是自包含的,并且与控制器和视图相分离,所以很容易改变应用程序的数据层和业务规则.如果把数据库从MySQL移植到Oracle.SQLServer,或者改变基于
《从0到1学习Flink》—— Flink 写入数据到 Kafka
前言 之前文章 <从0到1学习Flink>-- Flink 写入数据到 ElasticSearch 写了如何将 Kafka 中的数据存储到 ElasticSearch 中,里面其实就已经用到了 Flink 自带的 Kafka source connector(FlinkKafkaConsumer).存入到 ES 只是其中一种情况,那么如果我们有多个地方需要这份通过 Flink 转换后的数据,是不是又要我们继续写个 sink 的插件呢?确实,所以 Flink 里面就默认支持了不少 sink,比如
《从0到1学习Flink》—— Flink 写入数据到 ElasticSearch
前言 前面 FLink 的文章中我们已经介绍了说 Flink 已经有很多自带的 Connector. 1.<从0到1学习Flink>-- Data Source 介绍 2.<从0到1学习Flink>-- Data Sink 介绍 其中包括了 Source 和 Sink 的,后面我也讲了下如何自定义自己的 Source 和 Sink. 那么今天要做的事情是啥呢?就是介绍一下 Flink 自带的 ElasticSearch Connector,我们今天就用他来做 Sink,将 Kafk
数据集成工具Teiid Designer的环境搭建
由于实验室项目要求的关系,看了些数据汇聚工具 Teiid 的相关知识.这里总结下 Teiid 的可视化配置工具 Teiid Designer 的部署过程. 背景知识 数据集成是把不同来源.格式.特点性质的数据在逻辑上或物理上有机地集中,从而为企业提供全面的数据共享.数据集成的方式多种多样,这里介绍的 Teiid 是其中的一种:通过抽象和联邦技术,实现分布式数据源的实时数据访问和集成,无需从记录系统中复制或移动数据. <Teiid 基于数据联邦的集成方案>是一篇关于 Teiid 的中文介绍,比较
数据集成工具:Teiid实践
数据集成是把不同来源.格式.特点性质的数据在逻辑上或物理上有机地集中,从而为企业提供全面的数据共享.数据集成的方式多种多样,这里介绍的 Teiid 是其中的一种:通过抽象和联邦技术,实现分布式数据源的实时数据访问和集成,无需从记录系统中复制或移动数据. 链接是一篇关于 Teiid 的中文介绍,比较详细. 由于适配不同数据源和生成虚拟数据库(VDB)需要维护好几个配置文件,直接手动部署 Teiid 比较难受.好在 Teiid 提供了辅助工具 Teiid Designer,这是一个 Eclipse
DataPipeline CTO 陈肃:我们花了3年时间,重新定义数据集成
目前,中国企业在大数据流通.交换.利用等方面仍处于起步阶段,但是企业应用数据集成市场却是庞大的.根据 Forrester 数据看来,2017 年全球数据应用集成市场纯软件规模是 320 亿美元,如果包括人工在内,将达到 3940 亿美元. 在数据应用集成领域中,既有 Oracle.SAP.微软.Informatica 等传统的 IT 大佬,更有众多的创新型企业,其中 DataPipeline 就是一家通过提供批流一体的数据融合.数据清洗.数据同步等服务,帮助企业连接内外部数据孤岛,实现数据交换与
热门专题
csv导入acess乱码
uView steps源码
centos7 查看大页内存
echarts 多个版本并存
未能找到 using datatable
spring 注解注入map类型的配置
selenium OCR识别验证码
win7下vs2008补丁官网下载
touch.js官网
helm rancher 密码
dubbo generic超时时间不生效
Office2010vol版iso
appstore 上传app更换图标
ACM 括号匹配 HDU
yum更新源命令 redhot
c# picturebox的视频如何截图
markdown vscode如何在正文中输入上下班
new File()过后 size被变成了15b
xml中配置redisson
group by不显示