cr:http://blog.csdn.net/txwh0820/article/details/46392293 一.矩阵的迹求导法则 1. 复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix 2. x is a column vector, A is a matrix d(A∗x)/dx=A d(xT∗A)/dxT=A d(xT∗A)/dx=AT d(xT∗A∗x)/dx=xT(AT+A) 3. Practice: 4. 矩阵求导计算法则 求导公式(撇号为
转载自: http://blog.csdn.net/txwh0820/article/details/46392293 矩阵的迹求导法则 1. 复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix 2. x is a column vector, A is a matrix d(A∗x)/dx=A d(xT∗A)/dxT=A d(xT∗A)/dx=AT d(xT∗A∗x)/dx=xT(AT+A) 3. Practice: 4. 矩阵求导计算法则 求导公式(撇号为
# coding:utf-8 from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from __future__ import division import tensorflow as tf x = tf.placeholder(dtype=tf.float32) y = tf.placeholder(dtype=
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vector norm. For matrices... NORM(X) is the largest singular value of X, max(svd(X)). NORM(X,2) is the same as NORM(X). NORM(X,1) is the 1
今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会.不过还好网上有人总结了.吼吼,赶紧搬过来收藏备份. 基本公式:Y = A * X --> DY/DX = A'Y = X * A --> DY/DX = AY = A' * X * B --> DY/DX = A * B'Y = A' * X' * B --> DY/DX = B * A' 1. 矩阵Y对标量x求导: 相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了 Y = [y(ij)] --> dY/
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vector norm. For matrices... NORM(X) is the largest singular value of X, max(svd(X)). NORM(X,2) is the same as NORM(X). NORM(X,1) is the 1-norm of X, the larg
格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释: NORM Matrix or vector norm. For matrices... NORM(X) is the 2-norm of X. NORM(X,2) is the same as NORM(X). NORM(X,1) is the 1-norm of X. NORM(X,inf) is the infinity norm of