代码: clear M = 600;N = 420;p=200;q=2282; eq = @(x) x^M-(1+q/p)*x^(M-N)+q/p; options = optimset('MaxFunEvals',10000,'MaxIter',1000); x=fsolve(eq,1.2345,options); r=1-x 问题描述: No solution found. fsolve stopped because the relative size of the current ste
这是剑指offer数组中重复的数字那个题,直接使用的swap函数 class Solution { public: // Parameters: // numbers: an array of integers // length: the length of array numbers // duplication: (Output) the duplicated number in the array number // Return value: true if the input is
LeetCode 80 Remove Duplicates from Sorted Array II [Array/auto] <c++> 给出排序好的一维数组,如果一个元素重复出现的次数大于两次,删除多余的复制,返回删除后数组长度,要求不另开内存空间. C++ 献上自己丑陋无比的代码.相当于自己实现一个带计数器的unique函数 class Solution { public: int removeDuplicates(std::vector<int>& nums) {
网址:https://leetcode.com/problems/check-if-word-is-valid-after-substitutions/ 参考:https://leetcode.com/problems/check-if-word-is-valid-after-substitutions/discuss/247626/JavaPythonC%2B%2B-Stack-Solution-O(N 方法1:使用c++自带的find函数和erase函数 class Solution { p
Balanced Binary Tree Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1. Show Tags SOLU
由于之前对算法题接触不多,因此暂时只做easy和medium难度的题. 看完了<算法(第四版)>后重新开始刷LeetCode了,这次决定按topic来刷题,有一个大致的方向.有些题不止包含在一个topic中,就以我自己做的先后顺序为准了. Array ---11.Container With Most Water 给定许多条与y轴平行的直线,求其中两条直线与x轴围成的容器的最大容量. 这道题用到了双指针的思想.我们在数轴的两端分别放置一个left指针和right指针,因为容器容量=较短边*两边
题意 Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead. For example, given the array [2,3,1,2,4,3] and s = 7, the subarray [4,3] has the mini
Reverse bits of a given 32 bits unsigned integer. For example, given input 43261596 (represented in binary as 00000010100101000001111010011100), return 964176192 (represented in binary as 00111001011110000010100101000000). Follow up:If this function
1.x的平方根 java (1)直接使用函数 class Solution { public int mySqrt(int x) { int rs = 0; rs = (int)Math.sqrt(x); return rs; } } (2)二分法 对于一个非负数n,它的平方根不会小于大于(n/2+1). 在[0, n/2+1]这个范围内可以进行二分搜索,求出n的平方根. class Solution { public int mySqrt(int x) { long left=1,right=