首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
function R语言中
2024-10-18
R语言系列:自定义function
在用R语言做各种事物时,用户自定义函数是不可或缺的.这期来讲讲如何自定义R的function.首先要介绍的是function的基本框架: myfunction <- function(arg1, arg2, ... ){ statements return(object) } 1 2 3 4 函数名称为myfunction arg1,arg2 为参数 statements 为函数语句 return(object)返回结果 两个例子 例子一:随机数产生,画图 function1 <- funct
掌握R语言中的apply函数族(转)
转自:http://blog.fens.me/r-apply/ 前言 刚开始接触R语言时,会听到各种的R语言使用技巧,其中最重要的一条就是不要用循环,效率特别低,要用向量计算代替循环计算. 那么,这是为什么呢?原因在于R的循环操作for和while,都是基于R语言本身来实现的,而向量操作是基于底层的C语言函数实现的,从性能上来看,就会有比较明显的差距了.那么如何使用C的函数来实现向量计算呢,就是要用到apply的家族函数,包括apply, sapply, tapply, mapply, lapp
R语言中apply函数
前言 刚开始接触R语言时,会听到各种的R语言使用技巧,其中最重要的一条就是不要用循环,效率特别低,要用向量计算代替循环计算. 那么,这是为什么呢?原因在于R的循环操作for和while,都是基于R语言本身来实现的,而向量操作是基于底层的C语言函数实现的,从性能上来看,就会有比较明显的差距了.那么如何使用C的函数来实现向量计算呢,就是要用到apply的家族函数,包括apply, sapply, tapply, mapply, lapply, rapply, vapply, eapply等. 目录
R语言中的MySQL操作
R语言中,针对MySQL数据库的操作执行其实也有很多中方式.本人觉得,熟练掌握一种便可,下面主要就个人的学习使用情况,总结其中一种情况-----使用RMySQL操作数据库. 1.下载DBI和RMySQL包 install.packages(c("DBI","RMySQL")) 2.载入DBI和RMySQL包 library(DBI) library(RMySQL) 3.创建连接和设置字符集获取编码格式 # 创建数据库连接 con <- dbConnect(My
R语言中的factor
对于初学者来说,R语言中的factor有些难以理解.如果直译factor为“因子”,使得其更加难以理解.我倾向于不要翻译,就称其为factor,然后从几个例子中理解: <span style="font-size:12px;">data <- c(1,2,2,3,1,2,3,3,1,2,3,3,1) data </span> 显示结果: <span style="font-size:12px;"> [1] 1 2 2 3 1
R语言中的Apriori关联规则的使用
1.下载Matrix和arules包 install.packages(c("Matrix","arules")) 2.载入引入Matrix和arules包 # 引入Matrix和arules包 library(Matrix) library(arules) 3.读取数据 # 读入数据 dataset <- mysql_find(sql) 4.数据转换 # 将数据框转为矩阵 dataset2 <- as.matrix(dataset) # 转换为交易流数
R语言中 fitted()和predict()的区别
fitted是拟合值,predict是预测值.模型是基于给定样本的值建立的,在这些给定样本上做预测就是拟合.在新样本上做预测就是预测. 你可以找一组数据试试,结果如何. fit<-lm(weight~height,data=women) fitted(fit) predict(fit,newdata=data.frame(height=90))##将90代入看结果如何 这是R in action中的例子
R语言中Fisher判别的使用方法
最近编写了Fisher判别的相关代码时,需要与已有软件比照结果以确定自己代码的正确性,于是找到了安装方便且免费的R.这里把R中进行Fisher判别的方法记录下来. 1. 判别分析与Fisher判别 不严谨但是通俗的说法,判别分析(Discriminant Analysis)是一种多元(多个变量)统计分析方法,它根据样本的多个已知变量的值对样本进行分类的方法.一般来说,判别分析由两个阶段构成——学习(训练)和判别.在学习阶段,给定一批已经被分类好的样本,根据它们的分类情况和样本的多个变量的值来学习
R 语言中 data table 的相关,内存高效的 增量式 data frame
面对的是这样一个问题,不断读入一行一行数据,append到data frame上,如果用dataframe, rbind() ,可以发现数据大的时候效率明显变低. 原因是 每次bind 都是一次重新整个数据集的重新拷贝 这个链接有人测试了各种方案,似乎给出了最优方案 http://stackoverflow.com/questions/11486369/growing-a-data-frame-in-a-memory-efficient-manner library(data.table) d
rugarch包与R语言中的garch族模型
来源:http://www.dataguru.cn/article-794-1.html rugarch包是R中用来拟合和检验garch模型的一个包.该包最早在http://rgarch.r-forge.r-project.org上发布,现已发布到CRAN上.简单而言,该包主要包括四个功能: 拟合garch族模型 garch族模型诊断 garch族模型预测 模拟garch序列 拟合序列分布 下面分别说一下. 一.拟合garch族模型 拟合garch族模型分三个步骤:(1)通过ugarchspec
关于R语言中set.seed()
在r中取sample时候,经常会有set.seed(某数),经常看见取值很大,其实这里无论括号里取值是多少,想要上下两次取值一样,都需要在每次取值前输入同样的set.seed(某数),才能保证两次取值相同,从而保证让样本可重复. > set.seed(100) > x <- rnorm(5) > y <- rnorm(5) > x==y [1] FALSE FALSE FALSE FALSE FALSE > set.seed(1000) > x <-
R语言中的read.table()
参考资料:http://www.cnblogs.com/xianghang123/archive/2012/06/06/2538274.html read.table(file, header = FALSE, sep = "", quote = "\"'", dec = ".", numerals = c("allow.loss", "warn.loss", "no.loss"
R语言中的logical(0)和numeric(0)以及赋值问题
logical(0) 不等于 numeric(0).两者都不等于NULL值,即is.null(logical(0))和is.null(numeric(0))返还值都是FALSE.这很有意思,说明长度为零的值有时却不会别算为空值,但空值的定义却是函数中没有被赋值的参数,特征就是没有值.如何区分NULL和NA?很简单,后者的logical length是1,而前者的logical length是0,意思是假如用is.logical判断NA的逻辑值,得到的结果是TRUE.NA可以为正无穷或负无穷,但N
R语言中strptime返回值永远为NA的问题
调用前加上以下代码,即可解决 Sys.setlocale("LC_TIME", "C");
R语言中的if-else语句写法
结构 1 : if() xx else yy 一行: 结构 2: if() {xx} else {yy} 或者 if(){ xx }else #此处不能两行写 yy 结构3: { if else } 结构三括号中 可以任意写
关于R语言中dnorm,pnorm,qnorm,rnorm的用法
dnorm,pnorm,qnorm,rnorm的表达式: 其中x和q是由数值型变量构成的向量,p是由概率构成的向量,n是随机产生的个数 mean是要计算正态分布的均值,缺省值为0,sd是计算正态分布的标准差, 缺省值为1 其中dnorm返回值是正态分布的概率密度函数 其中pnorm返回的是正态分布的分布函数 其中qnorm返回的是给定概率p后的下分位点 其中rnorm返回的是由n个正态分布随机数构成的向量
R语言中abline和lines的区别
函数lines()其作用是在已有图上加线,命令为lines(x,y),其功能相当于plot(x,y,type="1")函数abline()可以在图上加直线,其使用方法有四种格式.(1)abline(a,b)表示画一条y=a+bx的直线(2)abline(h=y)表示画出一条过所有点得水平直线(3)abline(v=x)表示画出一条过所有点的竖直直线(4)abline(lm.obj)表示绘出线性模型得到的线性方程
R语言中的Single link和Complete link
下图表示A.B.C.D.E各点相互之间的距离 一.Single link结果: 1.找A.B.C.D.E各点之间距离最短的 A和B为4,即AB连在一起(之后把它俩看成一个整体): 2.找除(第一步)以外的A.B.C.D.E各点之间距离最短的 D和E为8,即即DE连在一起(之后把它俩看成一个整体): 3.找除(第一.二步)以外的A.B.C.D.E各点之间距离最短的 B和C为8.1,即AB和C连在一起(之后把它三个看成一个整体): 4.最后把ABC和DE连在一起 二.Complete-link 1.
[原创]C/C++语言中,如何在main.c或main.cpp中调用另一个.c文件
C/C++语言中,如何在main.cpp中调用另一个.c文件主要有5种思路: 1.在VS2012 IDE中,将被引用的.c文件后缀名全部修改为.h,然后通过IDE的解决方案资源管理器中鼠标右键单击“头文件”-"添加"-“现有项”,选中修改后缀名后的.h文件-"添加",将待引用的文件添加到工程中. 添加到“头文件”而不是“源文件”的作用:主要是使头文件的项类型属性为“C/C++ 标头”,而不是“C/C++ 编译器”.后者是将该文件独立编译成目标文件*.obj.用户可右
C++语言中std::array的神奇用法总结,你需要知道!
摘要:在这篇文章里,将从各个角度介绍下std::array的用法,希望能带来一些启发. td::array是在C++11标准中增加的STL容器,它的设计目的是提供与原生数组类似的功能与性能.也正因此,使得std::array有很多与其他容器不同的特殊之处,比如:std::array的元素是直接存放在实例内部,而不是在堆上分配空间:std::array的大小必须在编译期确定:std::array的构造函数.析构函数和赋值操作符都是编译器隐式声明的--这让很多用惯了std::vector这类容器的程
C语言中的static 详细分析
转自:http://blog.csdn.net/keyeagle/article/details/6708077/ google了近三页的关于C语言中static的内容,发现可用的信息很少,要么长篇大论不知所云要么在关键之处几个字略过,对于想挖掘底层原理的初学者来说参考性不是很大.所以,我这篇博文博采众家之长,把互联网上的资料整合归类,并亲手编写程序验证之. C语言代码是以文件为单位来组织的,在一个源程序的所有源文件中,一个外部变量(注意不是局部变量)或者函数只能在一个源程序中定义一次,如果有重
热门专题
vs code 生成桌面快捷方式
jquery 多个click事件,最后执行
C#实现winform软件开机自动启动并最小化到系统托盘
sql字符串转日期函数
在卸载中找不到mysql
处理sqlserver日志文件过大语句
codeforces fft匹配
对jmeter如何使用form-data
windows 异步connect 判断成功
地心地固坐标系转站心坐标系
mysql 双一保存数据
alias 转发 scene 到根目录
爬虫 authorization请求头
idea显示no sdk
python建立单链表链表节点有三个
jeecg三级菜单展开收缩问题
WebBrowser1 取cook
openssldevel源码安装
mysql source 导入效率比对
vue项目访问某个网址