1. 建模 对原始信号 X 进行观测,观测可以抽象为(离散:PY|X(y|x), 连续:fY|X(y|x)),物理世界噪声的存在,将导致观测到的 X 出现一定的噪声,记为 Y: X⇒fY|X(y|x)⇒Y 对于推断(inference)问题而言,我们更多的是考虑如何从 Y 获取原始的无噪信号 X: Y⇒fX|Y(y|x)⇒X 注意,原始信号 X 离散的,并不意味着其观测值也是离散的: {X=0,1Y=X+W 而 W 是高斯噪声.这种由离散信号因为高斯噪声(连续概率分布)的存在而最终得到连续的观察
matplotlib绘图总结 本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 类MATLAB API 最简单的入门是从类 MATLAB API 开始,它被设计成兼容 MATLAB 绘图函数. from pylab import * from numpy import * x = linspace(0, 5, 10) y = x ** 2 figure() plot(x, y, 'r') xlabel('x') ylabel('y') title('title') 创
本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 类MATLAB API 最简单的入门是从类 MATLAB API 开始,它被设计成兼容 MATLAB 绘图函数. from pylab import * from numpy import * x = linspace(0, 5, 10) y = x ** 2 figure() plot(x, y, 'r') xlabel('x') ylabel('y') title('title') 创建子图,选择绘图用的颜色与描点符号
本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 类MATLAB API 最简单的入门是从类 MATLAB API 开始,它被设计成兼容 MATLAB 绘图函数. from pylab import * from numpy import * x = linspace(0, 5, 10) y = x ** 2 figure() plot(x, y, 'r') xlabel('x') ylabel('y') title('title') 创建子图,选择绘图用的颜色与描点符号
本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 类MATLAB API 最简单的入门是从类 MATLAB API 开始,它被设计成兼容 MATLAB 绘图函数. from pylab import * from numpy import * x = linspace(0, 5, 10) y = x ** 2 figure() plot(x, y, 'r') xlabel('x') ylabel('y') title('title') 创建子图,选择绘图用的颜色与描点符号