生成式对抗模型GAN (Generativeadversarial networks) 是Goodfellow等[1]在 2014年提出的一种生成式模型,目前已经成为人工智能学界一个热门的研究方向,著名学者Yann Lecun甚至将其称为“过去十年间机器学习领域最让人激动的点子".GAN的基本思想源自博弈论的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式来训练,目的是估测数据样本的潜在分布并生成新的数据样本.在图像和视觉计算.语音和语言处理.信息安全.棋类比赛等领域,GAN正在被